scholarly journals A Rice Ancestral Genetic Resource Conferring Ideal Plant Shapes for Vegetative Growth and Weed Suppression

2021 ◽  
Vol 12 ◽  
Author(s):  
Noritoshi Inagaki ◽  
Hidenori Asami ◽  
Hideyuki Hirabayashi ◽  
Akira Uchino ◽  
Toshiyuki Imaizumi ◽  
...  

To maximize crop growth, crops need to capture sunlight efficiently. This property is primarily influenced by the shape of the crops such as the angle, area, and arrangement of leaves. We constructed a rice (Oryza sativa L.) inbred line that displayed an ideal transition of plant shapes in terms of sunlight receiving efficiency. During vegetative growth, this line exhibited tiller spreading with increased tiller number, which formed a parabolic antenna-like structure. The architecture probably improved light reception efficiency of individuals compared with the recurrent parent. The line achieved not only acceleration of the vegetative growth, but also significant suppression of weed growth under the canopy. The increased light reception efficiency of the line has consequently reduced the amount of incident light to the ground and supplied significant competitiveness against weeds. The spread tillers became erect from the entry of the reproductive growth phase, adaptively sustaining light reception efficiency in thicker stands. The line carries a small chromosomal segment from Oryza rufipogon Griff., a putative progenitor of Asian cultivated rice. The introduced chromosome segment had little effect on grain yield and quality. Our results shed light on potentials hidden in the wild rice chromosome segment to achieve the valuable traits.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Peng ◽  
Win Tun ◽  
Shuang-feng Dai ◽  
Jia-yue Li ◽  
Qun-jie Zhang ◽  
...  

Photoperiod sensitivity is a dominant determinant for the phase transition in cereal crops. CCT (CONSTANS, CO-like, and TOC1) transcription factors (TFs) are involved in many physiological functions including the regulation of the photoperiodic flowering. However, the functional roles of CCT TFs have not been elucidated in the wild progenitors of crops. In this study, we identified 41 CCT TFs, including 19 CMF, 17 COL, and five PRR TFs in Oryza rufipogon, the presumed wild ancestor of Asian cultivated rice. There are thirty-eight orthologous CCT genes in Oryza sativa, of which ten pairs of duplicated CCT TFs are shared with O. rufipogon. We investigated daily expression patterns, showing that 36 OrCCT genes exhibited circadian rhythmic expression. A total of thirteen OrCCT genes were identified as putative flowering suppressors in O. rufipogon based on rhythmic and developmental expression patterns and transgenic phenotypes. We propose that OrCCT08, OrCCT24, and OrCCT26 are the strong functional alleles of rice DTH2, Ghd7, and OsPRR37, respectively. The SD treatment at 80 DAG stimulated flowering of the LD-grown O. rufipogon plants. Our results further showed that the nine OrCCT genes were significantly downregulated under the treatment. Our findings would provide valuable information for the construction of photoperiodic flowering regulatory network and functional characterization of the CCT TFs in both O. rufipogon and O. sativa.


2016 ◽  
Author(s):  
Peter Civáň ◽  
Terence A. Brown

AbstractCultivated Asian rice (O. sativa L.) comprises several groups with distinct ecological requirements and culinary uses. While the two subspecies of O. sativa – indica and japonica – have been subjected to a multitude of genetic and genomic analyses, less is known about the origins and diversity of the agronomically marginal groups – aus and aromatic rice. Here we reconstructed complete chloroplast genomes of over 1,800 accessions of wild and cultivated rice, including 240 aus and 73 aromatic varieties, and analysed the haplotype diversity of the taxonomic groups. We confirm the deep phylogenetic divergence between the main chloroplast haplotypes of japonica and indica, and reveal unique profiles of chloroplast diversity in aus and aromatic rice. Our results indicate that the latter two groups are not simple derivatives of indica and japonica, respectively, but originated from independent and/or reticulate domestication processes. Absence of phylogeographic patterns in the wild distribution of chloroplast haplogroups did not allow firm conclusions about geographic origins and the role of inter-group gene flow. Nonetheless, our results suggest that the domestication of indica, japonica, aus and aromatic rice operated on genetically different gene pools and followed different dynamics.


2021 ◽  
Author(s):  
Yong-Chao Xu ◽  
Jie Zhang ◽  
Dong-Yan Zhang ◽  
Ying-Hui Nan ◽  
Song Ge ◽  
...  

Abstract Background Wild rice, including Oryza nivara and Oryza rufipogon, which are considered as the ancestors of Asian cultivated rice (Oryza sativa L.), possess high genetic diversity and serve as a crucial resource for breeding novel cultivars of cultivated rice. Although many rice domestication related traits, such as seed shattering and plant architecture, have been intensively studied at the phenotypic and genomic levels, further investigation is needed to understand the molecular basis of phenotypic differences between cultivated and wild rice. Drought stress is one of the most severe abiotic stresses affecting rice growth and production. Adaptation to drought stress involves a cascade of genes and regulatory factors that form complex networks. Long noncoding natural antisense transcripts (lncNATs), a class of long noncoding RNAs (lncRNAs), regulate the corresponding sense transcripts and play an important role in plant growth and development. However, the contribution of lncNATs to drought stress response in wild rice remains largely unknown. Results Here, we conducted strand-specific RNA sequencing (ssRNA-seq) analysis of Nipponbare (O. sativa ssp. japonica) and two O. nivara accessions (BJ89 and BJ278) to determine the role of lncNATs in drought stress response in wild rice. A total of 1,246 lncRNAs were identified, including 1,091 coding–noncoding NAT pairs, of which 50 were expressed only in Nipponbare, and 77 were expressed only in BJ89 and/or BJ278. Of the 1,091 coding–noncoding NAT pairs, 240 were differentially expressed between control and drought stress conditions. Among these 240 NAT pairs, 12 were detected only in Nipponbare, and 187 were detected uniquely in O. nivara. Furthermore, 10 of the 240 coding–noncoding NAT pairs were correlated with genes previously demonstrated to be involved in stress response; among these, nine pairs were uniquely found in O. nivara, and one pair was shared between O. nivara and Nipponbare. Conclusion We identified lncNATs associated with drought stress response in cultivated rice and O. nivara. These results will improve our understanding of the function of lncNATs in drought tolerance and accelerate rice breeding.


2016 ◽  
Vol 16 (2) ◽  
pp. 90
Author(s):  
Dwinita W. Utami ◽  
A. Dinar Ambarwati ◽  
Aniversari Apriana ◽  
Atmitri Sisharmini ◽  
Ida Hanarida ◽  
...  

<p>Blast Resistance Performance of Promising Lines Derived from Backcross and Double Haploid Population Between IR64 and Oryza rufipogon. Developing blast resistance varieties with superior agronomical performance has been the one of the important priorities in rice breeding program. Based on the purpose of this study the double haploid and backcross populations were developed using the most popular cultivar IR64 as recurrent parent and wild rice species Oryza rufipogon (Acc. IRGC 105491) as blast resistance donor parent. This study was initiated to analyze the blast resistance and agronomical performance of double haploid populations (DH_I, DH_II and DH_III) and backcross populations (BC2, BC3, and BC5), based on the green house and field screening tests. The results of statistical analysis showed that the blast resistance performance of DH population were diverse among DH_I, DH_II and DH_III. The smallest diversity was on the DH_III population. The same results were also detected on BC populations. The smallest diversity was on BC5 population. The diversity comparison between DH and BC population showed that DH_III population had smaller variation than BC5. Indicated that DH_III population has the most fixed population. The agronomic performance evaluation of DH_III population selected lines showed that Bio1, Bio2, and Bio8 qualitified as the candidate of promising lines.</p><p> </p><p><strong>Abstrak</strong></p><p>Perakitan varietas tahan blas sebagai galur harapan, merupakan salah satu prioritas dalam program pemuliaan padi. Dalam rangka mendukung program tersebut, telah dilakukan pembentukan populasi haploid ganda (HG) dan silang balik (BC) dengan IR64 sebagai tetua berulang dan Oryza rufipogon (No. aksesi IRGC 105491) sebagai tetua donor gen tahan penyakit blas. Penelitian ini bertujuan menganalisis keragaan tingkat ketahanan galur-galur haploid ganda (HG_I, HG_II, dan HG_III) dan galur-galur silang balik (BC2, BC3, dan BC5) terhadap penyakit blas di rumah kaca dan lapang, sehingga diperoleh kandidat galur harapan. Hasil pengujian beberapa populasi HG dan BC menunjukan bahwa terdapat variasi keragaan yang berbeda-beda. Variasi paling kecil terdapat pada populasi HG_III. Hasil yang sama juga diperoleh pada populasi silang balik (BC2-BC5). Variasi paling kecil terdapat pada populasi BC5. Bila dibandingkan antar populasi HG dan BC, tingkat variasi pada populasi HG_III lebih kecil dibandingkan dengan tingkat variasi pada populasi BC5. Hal ini menunjukkan bahwa tingkat homosigositas paling tinggi terdapat pada populasi HG_III. Berdasarkan evaluasi penampilan agronomis beberapa galur HG_III terpilih, diperoleh tiga galur kandidat galur harapan Bio1, Bio2, dan Bio8.</p>


2009 ◽  
Vol 54 (20) ◽  
pp. 3813-3821 ◽  
Author(s):  
LeiGang Shi ◽  
XiangDong Liu ◽  
Bo Liu ◽  
XingJuan Zhao ◽  
Lan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document