scholarly journals Perceived Duration: The Interplay of Top-Down Attention and Task-Relevant Information

2019 ◽  
Vol 10 ◽  
Author(s):  
Alejandra Ciria ◽  
Florente López ◽  
Bruno Lara
Vision ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Christian Valuch

Color can enhance the perception of relevant stimuli by increasing their salience and guiding visual search towards stimuli that match a task-relevant color. Using Continuous Flash Suppression (CFS), the current study investigated whether color facilitates the discrimination of targets that are difficult to perceive due to interocular suppression. Gabor patterns of two or four cycles per degree (cpd) were shown as targets to the non-dominant eye of human participants. CFS masks were presented at a rate of 10 Hz to the dominant eye, and participants had the task to report the target’s orientation as soon as they could discriminate it. The 2-cpd targets were robustly suppressed and resulted in much longer response times compared to 4-cpd targets. Moreover, only for 2-cpd targets, two color-related effects were evident. First, in trials where targets and CFS masks had different colors, targets were reported faster than in trials where targets and CFS masks had the same color. Second, targets with a known color, either cyan or yellow, were reported earlier than targets whose color was randomly cyan or yellow. The results suggest that the targets’ entry to consciousness may have been speeded by color-mediated effects relating to increased (bottom-up) salience and (top-down) task relevance.


2013 ◽  
Vol 09 (02) ◽  
pp. 1350010 ◽  
Author(s):  
MATTEO CACCIOLA ◽  
GIANLUIGI OCCHIUTO ◽  
FRANCESCO CARLO MORABITO

Many computer vision problems consist of making a suitable content description of images usually aiming to extract the relevant information content. In case of images representing paintings or artworks, the information extracted is rather subject-dependent, thus escaping any universal quantification. However, we proposed a measure of complexity of such kinds of oeuvres which is related to brain processing. The artistic complexity measures the brain inability to categorize complex nonsense forms represented in modern art, in a dynamic process of acquisition that most involves top-down mechanisms. Here, we compare the quantitative results of our analysis on a wide set of paintings of various artists to the cues extracted from a standard bottom-up approach based on visual saliency concept. In every painting inspection, the brain searches for more informative areas at different scales, then connecting them in an attempt to capture the full impact of information content. Artistic complexity is able to quantify information which might have been individually lost in the fruition of a human observer thus identifying the artistic hand. Visual saliency highlights the most salient areas of the paintings standing out from their neighbours and grabbing our attention. Nevertheless, we will show that a comparison on the ways the two algorithms act, may manifest some interesting links, finally indicating an interplay between bottom-up and top-down modalities.


2018 ◽  
Author(s):  
Christine Larson ◽  
Arielle Baskin–Sommers ◽  
Daniel M. Stout ◽  
Nicholas L. Balderston ◽  
John Joseph Curtin ◽  
...  

Psychopathic behavior has long been attributed to a fundamental deficit in fear that arises from impaired amygdala function. Growing evidence demonstrates that fear potentiated startle (FPS) and other psychopathy-related deficits are moderated by focus of attention but, to date, no work on adult psychopathy has examined attentional modulation of the amygdala, or concomitant recruitment of relevant attention-related circuitry. Consistent with previous FPS findings, here we report that psychopathy-related differences in amygdala activation appear and disappear as a function of goal-directed attention. Specifically, decreased amygdala activity was observed in psychopathic offenders only when attention was engaged in an alternative goal-relevant task prior to presenting threat-relevant information. Under this condition, psychopaths also exhibited greater activation in selective attention regions of the lateral prefrontal cortex (LPFC) than non-psychopaths, and this increased LPFC activation mediated psychopathy’s association with decreased amygdala activation. In contrast, when explicitly attending to threat, amygdala activation in psychopaths did not differ from non-psychopaths. This pattern of amygdala activation highlights the potential role of LPFC in mediating the failure of psychopathic individuals to process fear and other important information when it is peripheral to the primary focus of goal-directed attention.


2020 ◽  
Author(s):  
Colin Bredenberg ◽  
Eero P. Simoncelli ◽  
Cristina Savin

AbstractNeural populations do not perfectly encode the sensory world: their capacity is limited by the number of neurons, metabolic and other biophysical resources, and intrinsic noise. The brain is presumably shaped by these limitations, improving efficiency by discarding some aspects of incoming sensory streams, while prefer-entially preserving commonly occurring, behaviorally-relevant information. Here we construct a stochastic recurrent neural circuit model that can learn efficient, task-specific sensory codes using a novel form of reward-modulated Hebbian synaptic plasticity. We illustrate the flexibility of the model by training an initially unstructured neural network to solve two different tasks: stimulus estimation, and stimulus discrimination. The network achieves high performance in both tasks by appropriately allocating resources and using its recurrent circuitry to best compensate for different levels of noise. We also show how the interaction between stimulus priors and task structure dictates the emergent network representations.


2009 ◽  
Vol 197 (1) ◽  
pp. 186-197 ◽  
Author(s):  
K ERICKSON ◽  
R PRAKASH ◽  
J KIM ◽  
B SUTTON ◽  
S COLCOMBE ◽  
...  

2015 ◽  
Vol 27 (9) ◽  
pp. 1811-1822 ◽  
Author(s):  
Sanne ten Oever ◽  
Nienke van Atteveldt ◽  
Alexander T. Sack

Temporal cues can be used to selectively attend to relevant information during abundant sensory stimulation. However, such cues differ vastly in the accuracy of their temporal estimates, ranging from very predictable to very unpredictable. When cues are strongly predictable, attention may facilitate selective processing by aligning relevant incoming information to high neuronal excitability phases of ongoing low-frequency oscillations. However, top–down effects on ongoing oscillations when temporal cues have some predictability, but also contain temporal uncertainties, are unknown. Here, we experimentally created such a situation of mixed predictability and uncertainty: A target could occur within a limited time window after cue but was always unpredictable in exact timing. Crucially to assess top–down effects in such a mixed situation, we manipulated target probability. High target likelihood, compared with low likelihood, enhanced delta oscillations more strongly as measured by evoked power and intertrial coherence. Moreover, delta phase modulated detection rates for probable targets. The delta frequency range corresponds with half-a-period to the target occurrence window and therefore suggests that low-frequency phase reset is engaged to produce a long window of high excitability when event timing is uncertain within a restricted temporal window.


2005 ◽  
Vol 17 (12) ◽  
pp. 1907-1922 ◽  
Author(s):  
Edward K. Vogel ◽  
Geoffrey F. Woodman ◽  
Steven J. Luck

Attention operates at an early stage in some experimental paradigms and at a late stage in others, which suggests that the locus of selection is flexible. The present study was designed to determine whether the locus of selection can vary flexibly within a single experimental paradigm as a function of relatively modest variations in stimulus and task parameters. In the first experiment, a new method for assessing the locus of selection was developed. Specifically, attention can influence perceptual encoding only if it is directed to the target before a perceptual representation of the target has been formed, whereas attention can influence postperceptual processes even if attention is cued after perception is complete. Event-related potentials were used to confirm the validity of this method. The subsequent experiments used cueing tasks in which subjects were required to perceive and remember a set of objects, and the difficulty of the perception and memory components of the task were varied. When the task overloaded perception but not working memory, attention influenced the formation of perceptual representations but not the storage of these representations in memory; when the task overloaded working memory but not perception, attention influenced the transfer of perceptual representations into memory but not the formation of the perceptual representations. Thus, attention operates to select relevant information at whatever stage or stages of processing are overloaded by a particular stimulus-task combination.


2012 ◽  
Vol 24 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Bo-Cheng Kuo ◽  
Mark G. Stokes ◽  
Anna Christina Nobre

Recent studies have shown that selective attention is of considerable importance for encoding task-relevant items into visual short-term memory (VSTM) according to our behavioral goals. However, it is not known whether top–down attentional biases can continue to operate during the maintenance period of VSTM. We used ERPs to investigate this question across two experiments. Specifically, we tested whether orienting attention to a given spatial location within a VSTM representation resulted in modulation of the contralateral delay activity (CDA), a lateralized ERP marker of VSTM maintenance generated when participants selectively encode memory items from one hemifield. In both experiments, retrospective cues during the maintenance period could predict a specific item (spatial retrocue) or multiple items (neutral retrocue) that would be probed at the end of the memory delay. Our results revealed that VSTM performance is significantly improved by orienting attention to the location of a task-relevant item. The behavioral benefit was accompanied by modulation of neural activity involved in VSTM maintenance. Spatial retrocues reduced the magnitude of the CDA, consistent with a reduction in memory load. Our results provide direct evidence that top–down control modulates neural activity associated with maintenance in VSTM, biasing competition in favor of the task-relevant information.


2017 ◽  
Author(s):  
Kai Hwang ◽  
James M. Shine ◽  
Mark D’Esposito

AbstractFlexible interaction between brain regions enables neural systems to transfer and process information adaptively for goal-directed behaviors. In the current study, we investigated neural substrates that interact with task-evoked functional connectivity during cognitive control. We conducted a human fMRI study where participants selectively attended to a category of visual stimuli in the presence of competing distractors from another stimulus category. To study flexible interactions between brain regions, we performed a dynamic functional connectivity analysis to estimate temporal changes in connectivity strength between brain regions under different levels of cognitive control. Consistent with theoretical predictions, we found that cognitive control selectively enhances functional connectivity for prioritizing the processing of task-relevant information. By regressing temporal changes in connectivity strength against activity patterns elsewhere in the brain, we localized frontal and parietal regions that potentially provide top-down biasing signals for influencing, or reading information out from, task-evoked functional connectivity. Our results suggest that in addition to modulating local activity, fronto-parietal regions could also exert top-down biasing signals to influence functional connectivity between distributed brain regions.


2021 ◽  
Author(s):  
Lynn K. A. Sörensen ◽  
Sander M. Bohté ◽  
Heleen A Slagter ◽  
H. Steven Scholte

An organism's level of arousal strongly affects task performance. Yet, what level of arousal is optimal for performance depends on task difficulty. For easy tasks, performance is best at higher arousal levels, whereas arousal levels show an inverted-U-shaped relationship with performance for difficult tasks, with best performance at medium arousal levels. This interaction between arousal and task difficulty is known as the Yerkes-Dodson effect (1908) and is thought to reflect sensory decision-making in the locus coeruleus and associated widespread release of noradrenaline. Yet, this account does not explain why perceptual performance decays with high levels of arousal in difficult, but not in simple tasks. Recent studies suggest that arousal may also affect performance by modulating sensory processes. Here, we augment a deep convolutional neural network (DCNN) with a global gain mechanism to mimic the effects of arousal on sensory processing. This allowed us to reproduce the Yerkes-Dodson effect in the model's performance. Investigating our network furthermore revealed that for easy tasks, early network features contained most task-relevant information during high global gain states, resulting in model performance on easy tasks being best at high global gain states. In contrast, later layers featured most information at medium global gain states and were essential for performance on challenging tasks. Our results therefore establish a novel account of the Yerkes-Dodson effect, where the interaction between arousal state and task difficulty directly results from an interaction between arousal states and hierarchical sensory processing.


Sign in / Sign up

Export Citation Format

Share Document