scholarly journals Identifying Methamphetamine Abstainers With Convolutional Neural Networks and Short-Time Fourier Transform

2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Lai ◽  
Qiuping Huang ◽  
Jiang Xin ◽  
Hufei Yu ◽  
Jingxi Wen ◽  
...  

Few studies have investigated the functional patterns of methamphetamine abstainers. A better understanding of the underlying neurobiological mechanism in the brains of methamphetamine abstainers will help to explain their abnormal behaviors. Forty-two male methamphetamine abstainers, currently in a long-term abstinence status (for at least 14 months), and 32 male healthy controls were recruited. All subjects underwent functional MRI while responding to drug-associated cues. This study proposes to combine a convolutional neural network with a short-time Fourier transform to identify different brain patterns between methamphetamine abstainers and controls. The short-time Fourier transformation provides time-localized frequency information, while the convolutional neural network extracts the structural features of the time–frequency spectrograms. The results showed that the classifier achieved a satisfactory performance (98.9% accuracy) and could extract robust brain voxel information. The highly discriminative power voxels were mainly concentrated in the left inferior orbital frontal gyrus, the bilateral postcentral gyri, and the bilateral paracentral lobules. This study provides a novel insight into the different functional patterns between methamphetamine abstainers and healthy controls. It also elucidates the pathological mechanism of methamphetamine abstainers from the view of time–frequency spectrograms.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhiwen Huang ◽  
Jianmin Zhu ◽  
Jingtao Lei ◽  
Xiaoru Li ◽  
Fengqing Tian

Tool wear monitoring is essential in precision manufacturing to improve surface quality, increase machining efficiency, and reduce manufacturing cost. Although tool wear can be reflected by measurable signals in automatic machining operations, with the increase of collected data, features are manually extracted and optimized, which lowers monitoring efficiency and increases prediction error. For addressing the aforementioned problems, this paper proposes a tool wear monitoring method using vibration signal based on short-time Fourier transform (STFT) and deep convolutional neural network (DCNN) in milling operations. First, the image representation of acquired vibration signals is obtained based on STFT, and then the DCNN model is designed to establish the relationship between obtained time-frequency maps and tool wear, which performs adaptive feature extraction and automatic tool wear prediction. Moreover, this method is demonstrated by employing three tool wear experimental datasets collected from three-flute ball nose tungsten carbide cutter of a high-speed CNC machine under dry milling. Finally, the experimental results prove that the proposed method is more accurate and relatively reliable than other compared methods.


2017 ◽  
Vol 30 (6) ◽  
pp. 1357-1368 ◽  
Author(s):  
Li-Hua Wang ◽  
Xiao-Ping Zhao ◽  
Jia-Xin Wu ◽  
Yang-Yang Xie ◽  
Yong-Hong Zhang

2021 ◽  
Vol 11 (6) ◽  
pp. 2582
Author(s):  
Lucas M. Martinho ◽  
Alan C. Kubrusly ◽  
Nicolás Pérez ◽  
Jean Pierre von der Weid

The focused signal obtained by the time-reversal or the cross-correlation techniques of ultrasonic guided waves in plates changes when the medium is subject to strain, which can be used to monitor the medium strain level. In this paper, the sensitivity to strain of cross-correlated signals is enhanced by a post-processing filtering procedure aiming to preserve only strain-sensitive spectrum components. Two different strategies were adopted, based on the phase of either the Fourier transform or the short-time Fourier transform. Both use prior knowledge of the system impulse response at some strain level. The technique was evaluated in an aluminum plate, effectively providing up to twice higher sensitivity to strain. The sensitivity increase depends on a phase threshold parameter used in the filtering process. Its performance was assessed based on the sensitivity gain, the loss of energy concentration capability, and the value of the foreknown strain. Signals synthesized with the time–frequency representation, through the short-time Fourier transform, provided a better tradeoff between sensitivity gain and loss of energy concentration.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 909
Author(s):  
Azamatjon Kakhramon ugli Malikov ◽  
Younho Cho ◽  
Young H. Kim ◽  
Jeongnam Kim ◽  
Junpil Park ◽  
...  

Ultrasonic non-destructive analysis is a promising and effective method for the inspection of protective coating materials. Offshore coating exhibits a high attenuation rate of ultrasonic energy due to the absorption and ultrasonic pulse echo testing becomes difficult due to the small amplitude of the second echo from the back wall of the coating layer. In order to address these problems, an advanced ultrasonic signal analysis has been proposed. An ultrasonic delay line was applied due to the high attenuation of the coating layer. A short-time Fourier transform (STFT) of the waveform was implemented to measure the thickness and state of bonding of coating materials. The thickness of the coating material was estimated by the projection of the STFT into the time-domain. The bonding and debonding of the coating layers were distinguished using the ratio of the STFT magnitude peaks of the two subsequent wave echoes. In addition, the advantage of the STFT-based approach is that it can accurately and quickly estimate the time of flight (TOF) of a signal even at low signal-to-noise ratios. Finally, a convolutional neural network (CNN) was applied to automatically determine the bonding state of the coatings. The time–frequency representation of the waveform was used as the input to the CNN. The experimental results demonstrated that the proposed method automatically determines the bonding state of the coatings with high accuracy. The present approach is more efficient compared to the method of estimating bonding state using attenuation.


2015 ◽  
Vol 12 (03) ◽  
pp. 1550021 ◽  
Author(s):  
M. A. Al-Manie ◽  
W. J. Wang

Due to the advantages offered by the S-transform (ST) distribution, it has been recently successfully implemented for various applications such as seismic and image processing. The desirable properties of the ST include a globally referenced phase as the case with the short time Fourier transform (STFT) while offering a higher spectral resolution as the wavelet transform (WT). However, this estimator suffers from some inherent disadvantages seen as poor energy concentration with higher frequencies. In order to improve the performance of the distribution, a modification to the existing technique is proposed. Additional parameters are proposed to control the window's width which can greatly enhance the signal representation in the time–frequency plane. The new estimator's performance is evaluated using synthetic signals as well as biomedical data. The required features of the ST which include invertability and phase information are still preserved.


2014 ◽  
Vol 945-949 ◽  
pp. 1112-1115
Author(s):  
Yuan Zhou ◽  
Bin Chen ◽  
Bao Cheng Gao ◽  
Si Jie Zhang

For the variable speed estimation of wheel-bearings in strong background noise, a novel method with the short-time Fourier transform and BP neural network (STFT-BPNN) is proposed. In the method, it calculates the time-frequency spectrum with STFT technique. Then the instantaneous frequency is estimated by peak detection. Taking the instantaneous frequencies as the input vectors, the BP neural network is trained to fit the discrete instantaneous frequencies. The effectiveness of proposed method is demonstrated by simulation. Experimental results show that proposed method provides better performance on variable speed estimation for wheel-bearings.


2021 ◽  
Author(s):  
Denchai Worasawate ◽  
Warisara Asawaponwiput ◽  
Natsue Yoshimura ◽  
Apichart Intarapanich ◽  
Decho Surangsrirat

BACKGROUND Parkinson’s disease (PD) is a long-term neurodegenerative disease of the central nervous system. The current diagnosis is dependent on clinical observation and the abilities and experience of a trained specialist. One of the symptoms that affect most patients over the course of their illness is voice impairment. OBJECTIVE Voice is one of the non-invasive data that can be collected remotely for diagnosis and disease progression monitoring. In this study, we analyzed voice recording data from a smartphone as a possible disease biomarker. The dataset is from one of the largest mobile PD studies, the mPower study. METHODS A total of 29,798 audio clips from 4,051 participants were used for the analysis. The voice recordings were from sustained phonation by the participant saying /aa/ for ten seconds into the iPhone microphone. The audio samples were converted to a spectrogram using a short-time Fourier transform. CNN models were then applied to classify the samples. RESULTS A total of 29,798 audio clips from 4,051 participants were used for the analysis. The voice recordings were from sustained phonation by the participant saying /aa/ for ten seconds into the iPhone microphone. The audio samples were converted to a spectrogram using a short-time Fourier transform. CNN models were then applied to classify the samples. CONCLUSIONS Classification accuracies of the proposed method with LeNet-5, ResNet-50, and VGGNet-16 are 97.7 ± 0.1%, 98.6 ± 0.2%, and 99.3 ± 0.1%, respectively. CLINICALTRIAL ClinicalTrials.gov NCT02696603; https://www.clinicaltrials.gov/ct2/show/NCT02696603


2019 ◽  
Vol 9 (18) ◽  
pp. 3642
Author(s):  
Lin Liang ◽  
Haobin Wen ◽  
Fei Liu ◽  
Guang Li ◽  
Maolin Li

The incipient damages of mechanical equipment excite weak impulse vibration, which is hidden, almost unobservable, in the collected signal, making fault detection and failure prevention at the inchoate stage rather challenging. Traditional feature extraction techniques, such as bandpass filtering and time-frequency analysis, are suitable for matrix processing but challenged by the higher-order data. To tackle these problems, a novel method of impulse feature extraction for vibration signals, based on sparse non-negative tensor factorization is presented in this paper. Primarily, the phase space reconstruction and the short time Fourier transform are successively employed to convert the original signal into time-frequency distributions, which are further arranged into a three-way tensor to obtain a time-frequency multi-aspect array. The tensor is decomposed by sparse non-negative tensor factorization via hierarchical alternating least squares algorithm, after which the latent components are reconstructed from the factors by the inverse short time Fourier transform and eventually help extract the impulse feature through envelope analysis. For performance verification, the experimental analysis on the bearing datasets and the swashplate piston pump has confirmed the effectiveness of the proposed method. Comparisons to the traditional methods, including maximum correlated kurtosis deconvolution, singular value decomposition, and maximum spectrum kurtosis, also suggest its better performance of feature extraction.


Sign in / Sign up

Export Citation Format

Share Document