scholarly journals Transcriptome Analysis Identifies Strategies Targeting Immune Response-Related Pathways to Control Enterotoxigenic Escherichia coli Infection in Porcine Intestinal Epithelial Cells

2021 ◽  
Vol 8 ◽  
Author(s):  
Qiong Wu ◽  
Defeng Cui ◽  
Xinyu Chao ◽  
Peng Chen ◽  
Jiaxuan Liu ◽  
...  

Enterotoxigenic Escherichia coli (ETEC) is an important cause of post-weaning diarrhea (PWD) worldwide, resulting in huge economic losses to the swine industry worldwide. In this study, to understand the pathogenesis, the transcriptomic analysis was performed to explore the biological processes (BP) in porcine intestinal epithelial J2 cells infected with an emerging ETEC strain isolated from weaned pigs with diarrhea. Under the criteria of |fold change| (FC) ≥ 2 and P < 0.05 with false discovery rate < 0.05, a total of 131 referenced and 19 novel differentially expressed genes (DEGs) were identified after ETEC infection, including 96 upregulated DEGs and 54 downregulated DEGs. The Gene Ontology (GO) analysis of DEGs showed that ETEC evoked BP specifically involved in response to lipopolysaccharide (LPS) and negative regulation of intracellular signal transduction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that immune response-related pathways were mainly enriched in J2 cells after ETEC infection, in which tumor necrosis factor (TNF), interleukin 17, and mitogen-activated protein kinase (MAPK) signaling pathways possessed the highest rich factor, followed by nucleotide-binding and oligomerization domain-like receptor (NLRs), C-type lectin receptor (CLR), cytokine–cytokine receptor interaction, and Toll-like receptor (TLR), and nuclear factor kappa-B (NF-κB) signaling pathways. Furthermore, 30 of 131 referenced DEGs, especially the nuclear transcription factor AP-1 and NF-κB, participate in the immune response to infection through an integral signal cascade and can be target molecules for prevention and control of enteric ETEC infection by probiotic Lactobacillus reuteri. Our data provide a comprehensive insight into the immune response of porcine intestinal epithelial cells (IECs) to ETEC infection and advance the identification of targets for prevention and control of ETEC-related PWD.

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1356
Author(s):  
Ling Ge ◽  
Shuangxia Zou ◽  
Zehu Yuan ◽  
Weihao Chen ◽  
Shanhe Wang ◽  
...  

Escherichia coli (E. coli) F17 is a member of enterotoxigenic Escherichia coli, which can cause massive diarrhea and high mortality in newborn lambs. β-defensin is mainly produced by the epithelial tissue of the gastrointestinal tract in response to microbial infection. However, the molecular mechanism of sheep β-defensin 2 (SBD-2) against E. coli F17 remains unclear. This study aims to reveal the antibacterial ability of SBD-2 against E. coli F17 infection in sheep. Firstly, we established the culture system of ovine intestinal epithelial cells (OIECs) in vitro, treated with different concentrations of E. coli F17 for an indicated time. Secondly, we performed RNA interference and overexpression to investigate the effect of SBD-2 expression on E. coli F17 adhesion to OIECs. Finally, inhibitors of NF-κB and MAPK pathways were pre-treated to explore the possible relationship involving in E. coli F17 infection regulating SBD-2 expression. The results showed that E. coli F17 markedly (p < 0.01) upregulated the expression levels of SBD-2 mRNA and protein in a concentration- and time-dependent manner. Overexpression of SBD-2 contributed to enhancing E. coli F17 resistance in OIECs, while silencing SBD-2 dramatically improved the adhesion of E. coli F17 to OIECs (p < 0.05 or p < 0.01). Furthermore, E. coli F17 stimulated SBD-2 expression was obviously decreased by pre-treatment with NF-κB inhibitor PDTC, p38 MAPK inhibitor SB202190 and ERK1/2 MAPK inhibitor PD98095 (p < 0.05 or p < 0.01). Interestingly, adhesion of E. coli F17 to OIECs were highly enhanced by pre-treated with PDTC, SB202190 and PD98095. Our data suggested that SBD-2 could inhibit E. coli F17 infection in OIECs, possibly through NF-κB and MAPK signaling pathways. Our results provide useful theoretical basis on developing anti-infective drug and breeding for E. coli diarrhea disease-resistant sheep.


2012 ◽  
Vol 80 (11) ◽  
pp. 3850-3857 ◽  
Author(s):  
Jennifer Lising Roxas ◽  
John Scott Wilbur ◽  
Xiangfeng Zhang ◽  
Giovanna Martinez ◽  
Gayatri Vedantam ◽  
...  

ABSTRACTThe diarrheagenic pathogen enteropathogenicEscherichia coli(EPEC) limits the death of infected enterocytes early in infection. A number of bacterial molecules and host signaling pathways contribute to the enhanced survival of EPEC-infected host cells. EspZ, a type III secreted effector protein that is unique to EPEC and related “attaching and effacing” (A/E) pathogens, plays a role in limiting host cell death, but the precise host signaling pathways responsible for this phenotype are not known. We hypothesized that EspZ contributes to the survival of infected intestinal epithelial cells by interfering with apoptosis. Consistent with previous studies, scanning electron microscopy analysis of intestinal epithelial cells infected with an EPECespZmutant (ΔespZ) showed increased levels of apoptotic and necrotic cells compared to cells infected with the isogenic parent strain. Correspondingly, higher levels of cytosolic cytochromecand increased activation of caspases 9, 7, and 3 were observed for ΔespZstrain-infected cells compared to wild-type (WT) EPEC-infected cells. Finally,espZ-transfected epithelial cells were significantly protected from staurosporine-induced, but not tumor necrosis factor alpha (TNF-α)/cycloheximide-induced, apoptosis. Thus, EspZ contributes to epithelial cell survival by mechanisms that include the inhibition of the intrinsic apoptotic pathway. The enhanced survival of infected enterocytes by molecules such as EspZ likely plays a key role in optimal colonization by A/E pathogens.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 328 ◽  
Author(s):  
Claudio Salaris ◽  
Melania Scarpa ◽  
Marina Elli ◽  
Alice Bertolini ◽  
Simone Guglielmetti ◽  
...  

SARS-CoV-2 is a newly emerging virus that currently lacks curative treatments. Lactoferrin (LF) is a naturally occurring non-toxic glycoprotein with broad-spectrum antiviral, immunomodulatory and anti-inflammatory effects. In this study, we assessed the potential of LF in the prevention of SARS-CoV-2 infection in vitro. Antiviral immune response gene expression was analyzed by qRT-PCR in uninfected Caco-2 intestinal epithelial cells treated with LF. An infection assay for SARS-CoV-2 was performed in Caco-2 cells treated or not with LF. SARS-CoV-2 titer was determined by qRT-PCR, plaque assay and immunostaining. Inflammatory and anti-inflammatory cytokine production was determined by qRT-PCR. LF significantly induced the expression of IFNA1, IFNB1, TLR3, TLR7, IRF3, IRF7 and MAVS genes. Furthermore, LF partially inhibited SARS-CoV-2 infection and replication in Caco-2 intestinal epithelial cells. Our in vitro data support LF as an immune modulator of the antiviral immune response with moderate effects against SARS-CoV-2 infection.


2011 ◽  
Vol 1 (1) ◽  
pp. 16 ◽  
Author(s):  
S. Brijesh ◽  
Pundarikakshudu Tetali ◽  
Tannaz J. Birdi

Diarrhea is a major health concern in developing countries with enteropathogenic <em>Escherichia coli</em> (EPEC) being a leading cause of infantile diarrhea. Much of the pathology of EPEC infection is due to the inflammatory responses of infected intestinal epithelium through secretion of pro-inflammatory cytoki - nes such as interleukin (IL)-8. With medicinal plants gaining popularity as prospective antidiarrheal agents, we aimed to evaluate the effect of anti-diarrheal medicinal plants on secretion of IL-8 by epithelial cells in response to EPEC infection. The effect of the decoctions of four anti-diarrheal medicinal plants viz. <em>Aegle marmelos</em>, <em>Cyperus rotundus</em>, <em>Psidium guajava</em> and <em>Zingiber officinale</em> was studied on secretion of IL-8 by a human colon adenocarcinoma cell line, HT-29 infected with <em>E. coli </em>E2348/69. Two protocols were used viz. pre-incubation and post-incubation. The data obtained demonstrated that out of the four plants used, only <em>P. guajava</em> decreased secretion of IL-8 in the post-incubation protocol although in the pre-incubation protocol an increase was observed. A similar increase was seen with <em>C. rotundus</em> in the preincubation protocol. No effect on IL-8 secretion was observed with <em>A. marmelos</em> and <em>Z. officinale</em> in both protocols and with <em>C. rotundus </em>in the post-incubation protocol. The post-incubation protocol, in terms of clinical relevance, indicates the effect of the plant decoctions when used as treatment. Hence <em>P. guajava</em> may be effective in controlling the acute inflammatory response of the intestinal epithelial cells in response to EPEC infection.<p> </p>


2013 ◽  
Vol 58 (2) ◽  
pp. 384-393 ◽  
Author(s):  
Mercedes Ortega-González ◽  
Borja Ocón ◽  
Isabel Romero-Calvo ◽  
Andrea Anzola ◽  
Emilia Guadix ◽  
...  

2009 ◽  
Vol 136 (5) ◽  
pp. A-702
Author(s):  
Els van Hoffen ◽  
Nicoline M. Korthagen ◽  
Sander de Kivit ◽  
Bastiaan Schouten ◽  
Bart Bardoel ◽  
...  

2019 ◽  
Vol 29 (1-6) ◽  
pp. 91-100
Author(s):  
Dorna Khoobbakht ◽  
Shohreh Zare Karizi ◽  
Mohammad Javad  Motamedi ◽  
Rouhollah Kazemi ◽  
Pooneh Roghanian ◽  
...  

Enterotoxigenic <i>Escherichia coli</i> (ETEC) is the most common agent of diarrhea morbidity in developing countries. ETEC adheres to host intestinal epithelial cells via various colonization factors. The CooD and CotD proteins play a significant role in bacteria binding to the intestinal epithelial cells as adhesin tip subunits of CS1 and CS2 pili. The purpose here was to design a new construction containing <i>cooD</i> and <i>cotD</i> genes and use several types of bioinformatics software to predict the structural and immunological properties of the designed antigen. The fusion gene was synthesized with codon bias of <i>E. coli</i> in order to increase the expression level of the protein. The amino acid sequences, protein structure, and immunogenicity properties of potential antigens were analyzed in silico. The chimeric protein was expressed in <i>E. coli</i>BL21 (DE3). The antigenicity of the recombinant proteins was verified by Western blotting and ELISA. In order to assess the induced immunity, the immunized mice were challenged with wild-type ETEC by an intraperitoneal route. Immunological analyses showed the production of a high titer of IgG serum with no sign of serum-mucosal IgA antibody response. The result of the challenge assay showed that 30% of immunized mice survived. The results of this study showed that CooD-CotD recombinant protein can stimulate immunity against ETEC. The designed chimera could be a prototype for the subunit vaccine, which is worthy of further consideration.


Sign in / Sign up

Export Citation Format

Share Document