scholarly journals L-Ascorbic Acid Shapes Bovine Pasteurella multocida Serogroup A Infection

2021 ◽  
Vol 8 ◽  
Author(s):  
Guangfu Zhao ◽  
Pan Li ◽  
Hao Mu ◽  
Nengzhang Li ◽  
Yuanyi Peng

Bovine Pasteurella multocida serogroup A (bovine PmA) is one of the most important pathogens causing fatal pneumonia in cattle. However, it is largely unknown how nutrition shapes bovine PmA infection. Here, we discovered that the infected lung held the highest bacterial density than other tissues during infection. By screening the different metabolites between high (lung)- and low (liver)-bacterial density tissues, the present work revealed that L-ascorbic acid and L-aspartic acid directly influenced bovine P. multocida growth. Interestingly, L-ascorbic acid, which is expressed at higher levels in the infected livers, inhibited bovine PmA growth as well as virulence factor expression and promoted macrophage bactericidal activity in vitro. In addition, ascorbic acid synthesis was repressed upon bovine PmA infection, and supplementation with exogenous L-ascorbic acid significantly reduced the bacterial burden of the infected lungs and mouse mortality. Collectively, our study has profiled the metabolite difference of the murine lung and liver during bovine PmA infection. The screened L-ascorbic acid showed repression of bovine PmA growth and virulence expression in vitro and supplementation could significantly increase the survival rate of mice and reduce the bacterial load in vivo, which implied that L-ascorbic acid could serve as a potential protective agent for bovine PmA infection in clinic.

Diabetes ◽  
1989 ◽  
Vol 38 (8) ◽  
pp. 1036-1041 ◽  
Author(s):  
J. A. Vinson ◽  
M. E. Staretz ◽  
P. Bose ◽  
H. M. Kassm ◽  
B. S. Basalyga
Keyword(s):  

2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Pei-Yao Liu ◽  
Cheng-Cheung Chen ◽  
Chia-Ying Chin ◽  
Te-Jung Liu ◽  
Wen-Chiuan Tsai ◽  
...  

AbstractIn obese adults, nonalcoholic fatty liver disease (NAFLD) is accompanied by multiple metabolic dysfunctions. Although upregulated hepatic fatty acid synthesis has been identified as a crucial mediator of NAFLD development, the underlying mechanisms are yet to be elucidated. In this study, we reported upregulated expression of gene related to anergy in lymphocytes (GRAIL) in the livers of humans and mice with hepatic steatosis. Grail ablation markedly alleviated the high-fat diet-induced hepatic fat accumulation and expression of genes related to the lipid metabolism, in vitro and in vivo. Conversely, overexpression of GRAIL exacerbated lipid accumulation and enhanced the expression of lipid metabolic genes in mice and liver cells. Our results demonstrated that Grail regulated the lipid accumulation in hepatic steatosis via interaction with sirtuin 1. Thus, Grail poses as a significant molecular regulator in the development of NAFLD.


1963 ◽  
Vol 204 (1) ◽  
pp. 171-175 ◽  
Author(s):  
W. S. Ruliffson ◽  
J. M. Hopping

The effects in rats, of age, iron-deficiency anemia, and ascorbic acid, citrate, fluoride, and ethylenediaminetetraacetate (EDTA) on enteric radioiron transport were studied in vitro by an everted gut-sac technique. Sacs from young animals transported more than those from older ones. Proximal jejunal sacs from anemic animals transported more than similar sacs from nonanemic rats, but the reverse effect appeared in sacs formed from proximal duodenum. When added to media containing ascorbic acid or citrate, fluoride depressed transport as did anaerobic incubation in the presence of ascorbic acid. Anaerobic incubation in the presence of EDTA appeared to permit elevated transport. Ascorbic acid, citrate, and EDTA all enhanced the level of Fe59 appearing in serosal media. These results appear to agree with previously established in vivo phenomena and tend to validate the in vitro method as one of promise for further studies of factors affecting iron absorption and of the mechanism of iron absorption.


1983 ◽  
Vol 117 (1-2) ◽  
pp. 183-191 ◽  
Author(s):  
E.P. Norkus ◽  
W. Kuenzig ◽  
A.H. Conney

1981 ◽  
Vol 7 (3) ◽  
pp. 237-242 ◽  
Author(s):  
Kristin H. Milby ◽  
Ivan N. Mefford ◽  
Willie Chey ◽  
Ralph N. Adams
Keyword(s):  

2009 ◽  
Vol 6 (2) ◽  
pp. 227-231 ◽  
Author(s):  
S. A. Adesegun ◽  
A. Fajana ◽  
C. I. Orabueze ◽  
H. A. B. Coker

The antioxidant activities of crude extract ofPhaulopsis fascisepalaleaf were evaluated and compared with α-tocopherol and BHT as synthetic antioxidants and ascorbic acid as natural-based antioxidant.In vitro, we studied its antioxidative activities, radical-scavenging effects, Fe2+-chelating ability and reducing power. The total phenolic content was determined and expressed in gallic acid equivalent. The extract showed variable activities in all of thesein vitrotests. The antioxidant effect ofP. fascisepalawas strongly dose dependent, increased with increasing leaf extract dose and then leveled off with further increase in extract dose. Compared to other antioxidants used in the study, α-Tocopherol, ascorbic acid and BHT,P. fascisepalaleaf extract showed less scavenging effect on α,α,-diphenyl-β-picrylhydrazyl (DPPH) radical and less reducing power on Fe3+/ferricyanide complex but better Fe2+-chelating ability. These results revealed thein vitroantioxidant activity ofP.fascisepala.Further investigations are necessary to verify these activitiesin vivo.


2000 ◽  
Vol 27 (3) ◽  
pp. 221 ◽  
Author(s):  
Paraskevi Diakou ◽  
Laurence Svanella ◽  
Philippe Raymond ◽  
Jean-Pierre Gaudillère ◽  
Annick Moing

The protein level and regulation of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31, involved in malic acid synthesis) was studied during the fruit development of two grape (Vitis vinifera L.) varieties, ‘Cabernet Sauvignon’ and ‘Gora Chirine’, with berries of normal and low organic acid content, respectively. The protein level and in vitro activity were higher in the low-acid variety than in the normal-acid variety for most stages. In vivo PEPC activity, measured using 14 CO2 labelling, was significantly higher in the low-acid variety than in the normal-acid variety about 1 week before and 1 week after veraison (the day which corresponds to the onset of ripening). However, partitioning into malate was the same for both varieties. Antibodies raised against the N-terminal part of SorghumPEPC recognised the grape berry PEPC, indicating the presence of the consensus phosphorylation site involved in PEPC regulation. PEPC phosphorylation status was estimated by studying sensitivity to pH and malate. Grape berry PEPC appeared more sensitive to low pH and malate during ripening (IC50 malate, 0.2–0.7 mM) compared to during the earlier stages of development (IC50 malate, 1.2–2 mM) for both varieties. Therefore, in the normal-acid variety, PEPC seems to participate in controlling malic acid accumulation but does not seem to control the differences in malic acid concentration observed between the two varieties.


Sign in / Sign up

Export Citation Format

Share Document