scholarly journals Systematic Identification of Endogenous Retroviral Protein-Coding Genes Expressed in Canine Oral Malignant Melanoma

2021 ◽  
Vol 1 ◽  
Author(s):  
Koichi Kitao ◽  
Aoi Sumiyoshi ◽  
So Nakagawa ◽  
Yuki Matsumoto ◽  
Takuya Mizuno ◽  
...  

Endogenous retroviruses (ERVs) are remnants of ancestral retroviruses that infected host germ cells in the past. Most ERVs are thought to be non-functional elements, but some ERVs retain open reading frames (ORFs) capable of expressing proteins. The proteins encoded by ERV-ORFs have potential roles in oncogenesis; however, studies on mammals other than humans and mice are limited. Here, we identified ERV-derived genes expressed in canine oral malignant melanoma (OMM). We identified 11 ERV-derived genes in our OMM samples. Differential expression gene analysis revealed that four ERV-derived genes (PEG10, LOC102155597, and two newly identified genes) were upregulated in OMM compared to healthy tissues. PEG10 is a conserved long terminal repeat (LTR)-type retrotransposon-derived gene among mammals and is involved in human cancers. LOC102155597 is a retroviral env gene conserved in Carnivora. This Env protein harbors an immunosuppressive domain, implying the potential adverse effects on the immune system. While the production of viral particles from ERVs has been reported in human and mouse melanoma, we found no ERV-derived genes having the potential to produce viral particles. These results provide insights into the different and conserved features of ERV-derived genes in mammalian melanoma.

2021 ◽  
Vol 11 ◽  
Author(s):  
Eoin Dervan ◽  
Dibyangana D. Bhattacharyya ◽  
Jake D. McAuliffe ◽  
Faizan H. Khan ◽  
Sharon A. Glynn

Human endogenous retroviruses (HERV), ancient integrations of exogenous viruses, make up 8% of our genome. Long thought of as mere vestigial genetic elements, evidence is now accumulating to suggest a potential functional role in numerous pathologies including neurodegenerative diseases, autoimmune disorders, and multiple cancers. The youngest member of this group of transposable elements is HERV-K (HML-2). Like the majority of HERV sequences, significant post-insertional mutations have disarmed HERV-K (HML-2), preventing it from producing infectious viral particles. However, some insertions have retained limited coding capacity, and complete open reading frames for all its constituent proteins can be found throughout the genome. For this reason HERV-K (HML-2) has garnered more attention than its peers. The tight epigenetic control thought to suppress expression in healthy tissue is lost during carcinogenesis. Upregulation of HERV-K (HML-2) derived mRNA and protein has been reported in a variety of solid and liquid tumour types, and while causality has yet to be established, progressively more data are emerging to suggest this phenomenon may contribute to tumour growth and metastatic capacity. Herein we discuss its potential utility as a diagnostic tool and therapeutic target in light of the current in vitro, in vivo and clinical evidence linking HERV-K (HML-2) to tumour progression.


2000 ◽  
Vol 74 (17) ◽  
pp. 8065-8076 ◽  
Author(s):  
Massimo Palmarini ◽  
Claus Hallwirth ◽  
Denis York ◽  
Claudio Murgia ◽  
Tulio de Oliveira ◽  
...  

ABSTRACT Integrated into the sheep genome are 15 to 20 copies of type D endogenous loci that are highly related to two exogenous oncogenic viruses, jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV). The exogenous viruses cause infectious neoplasms of the respiratory tract in small ruminants. In this study, we molecularly cloned three intact type D endogenous retroviruses of sheep (enJS56A1, enJS5F16, and enJS59A1; collectively called enJRSVs) and analyzed their genomic structures, their phylogenies with respect to their exogenous counterparts, their capacity to form viral particles, and the expression specificities of their long terminal repeats (LTRs). In addition, the pattern of expression of enJSRVs in vivo was studied by in situ hybridization. All of the threeenJSRV proviruses had open reading frames for at least one of the structural genes. In particular, enJS56A1 had open reading frames for all structural genes, but it could not assemble viral particles when highly expressed in human 293T cells. We localized the defect for viral assembly in the first two-thirds of thegag gene by making a series of chimeras between enJS56A1 and the exogenous infectious molecular clone JSRV21. Phylogenetic analysis distinguished five ovine type D retroviruses:enJSRV groups A and B, ENTV, and two exogenous JSRV groups (African versus United Kingdom/North America isolates). Transient transfection assays indicated that the LTRs of the threeenJSRVs were not preferentially active in differentiated lung epithelial cells. This suggests that the pulmonary tropic JSRV developed from a type D retrovirus that did not have lung specificity. Consistent with this, in situ hybridization of a panel of normal ovine tissues revealed high expression of enJSRV mRNA in the luminal epithelium and glandular epithelium of the uterus; lower expression was localized in the lamina propria of the gut and in the bronchiolar epithelium of the lungs.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Robin-Lee Troskie ◽  
Yohaann Jafrani ◽  
Tim R. Mercer ◽  
Adam D. Ewing ◽  
Geoffrey J. Faulkner ◽  
...  

AbstractPseudogenes are gene copies presumed to mainly be functionless relics of evolution due to acquired deleterious mutations or transcriptional silencing. Using deep full-length PacBio cDNA sequencing of normal human tissues and cancer cell lines, we identify here hundreds of novel transcribed pseudogenes expressed in tissue-specific patterns. Some pseudogene transcripts have intact open reading frames and are translated in cultured cells, representing unannotated protein-coding genes. To assess the biological impact of noncoding pseudogenes, we CRISPR-Cas9 delete the nucleus-enriched pseudogene PDCL3P4 and observe hundreds of perturbed genes. This study highlights pseudogenes as a complex and dynamic component of the human transcriptional landscape.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Chaitanya Erady ◽  
Adam Boxall ◽  
Shraddha Puntambekar ◽  
N. Suhas Jagannathan ◽  
Ruchi Chauhan ◽  
...  

AbstractUncharacterized and unannotated open-reading frames, which we refer to as novel open reading frames (nORFs), may sometimes encode peptides that remain unexplored for novel therapeutic opportunities. To our knowledge, no systematic identification and characterization of transcripts encoding nORFs or their translation products in cancer, or in any other physiological process has been performed. We use our curated nORFs database (nORFs.org), together with RNA-Seq data from The Cancer Genome Atlas (TCGA) and Genotype-Expression (GTEx) consortiums, to identify transcripts containing nORFs that are expressed frequently in cancer or matched normal tissue across 22 cancer types. We show nORFs are subject to extensive dysregulation at the transcript level in cancer tissue and that a small subset of nORFs are associated with overall patient survival, suggesting that nORFs may have prognostic value. We also show that nORF products can form protein-like structures with post-translational modifications. Finally, we perform in silico screening for inhibitors against nORF-encoded proteins that are disrupted in stomach and esophageal cancer, showing that they can potentially be targeted by inhibitors. We hope this work will guide and motivate future studies that perform in-depth characterization of nORF functions in cancer and other diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David S. M. Lee ◽  
Joseph Park ◽  
Andrew Kromer ◽  
Aris Baras ◽  
Daniel J. Rader ◽  
...  

AbstractRibosome-profiling has uncovered pervasive translation in non-canonical open reading frames, however the biological significance of this phenomenon remains unclear. Using genetic variation from 71,702 human genomes, we assess patterns of selection in translated upstream open reading frames (uORFs) in 5’UTRs. We show that uORF variants introducing new stop codons, or strengthening existing stop codons, are under strong negative selection comparable to protein-coding missense variants. Using these variants, we map and validate gene-disease associations in two independent biobanks containing exome sequencing from 10,900 and 32,268 individuals, respectively, and elucidate their impact on protein expression in human cells. Our results suggest translation disrupting mechanisms relating uORF variation to reduced protein expression, and demonstrate that translation at uORFs is genetically constrained in 50% of human genes.


2021 ◽  
Author(s):  
Yanyi Jiang ◽  
Xiaofan Chen ◽  
Wei Zhang

AbstractIn RNA field, the demarcation between coding and non-coding has been negotiated by the recent discovery of occasionally translated circular RNAs (circRNAs). Although absent of 5’ cap structure, circRNAs can be translated cap-independently. Complementary intron-mediated overexpression is one of the most utilized methodologies for circRNA research but not without bearing echoing skepticism for its poorly defined mechanism and latent coexistent side products. In this study, leveraging such circRNA overexpression system, we have interrogated the protein-coding potential of 30 human circRNAs containing infinite open reading frames in HEK293T cells. Surprisingly, pervasive translation signals are detected by immunoblotting. However, intensive mutagenesis reveals that numerous translation signals are generated independently of circRNA synthesis. We have developed a dual tag strategy to isolate translation noise and directly demonstrate that the fallacious translation signals originate from cryptically spliced linear transcripts. The concomitant linear RNA byproducts, presumably concatemers, can be translated to allow pseudo rolling circle translation signals, and can involve backsplicing junction (BSJ) to disqualify the BSJ-based evidence for circRNA translation. We also find non-AUG start codons may engage in the translation initiation of circRNAs. Taken together, our systematic evaluation sheds light on heterogeneous translational outputs from circRNA overexpression vector and comes with a caveat that ectopic overexpression technique necessitates extremely rigorous control setup in circRNA translation and functional investigation.


2020 ◽  
Vol 6 (21) ◽  
pp. eaaz2059 ◽  
Author(s):  
Liman Niu ◽  
Fangzhou Lou ◽  
Yang Sun ◽  
Libo Sun ◽  
Xiaojie Cai ◽  
...  

Many annotated long noncoding RNAs (lncRNAs) harbor predicted short open reading frames (sORFs), but the coding capacities of these sORFs and the functions of the resulting micropeptides remain elusive. Here, we report that human lncRNA MIR155HG encodes a 17–amino acid micropeptide, which we termed miPEP155 (P155). MIR155HG is highly expressed by inflamed antigen-presenting cells, leading to the discovery that P155 interacts with the adenosine 5′-triphosphate binding domain of heat shock cognate protein 70 (HSC70), a chaperone required for antigen trafficking and presentation in dendritic cells (DCs). P155 modulates major histocompatibility complex class II–mediated antigen presentation and T cell priming by disrupting the HSC70-HSP90 machinery. Exogenously injected P155 improves two classical mouse models of DC-driven auto inflammation. Collectively, we demonstrate the endogenous existence of a micropeptide encoded by a transcript annotated as “non-protein coding” and characterize a micropeptide as a regulator of antigen presentation and a suppressor of inflammatory diseases.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Corrine Corrina R. Hartford ◽  
Ashish Lal

ABSTRACT Recent advancements in genetic and proteomic technologies have revealed that more of the genome encodes proteins than originally thought possible. Specifically, some putative long noncoding RNAs (lncRNAs) have been misannotated as noncoding. Numerous lncRNAs have been found to contain short open reading frames (sORFs) which have been overlooked because of their small size. Many of these sORFs encode small proteins or micropeptides with fundamental biological importance. These micropeptides can aid in diverse processes, including cell division, transcription regulation, and cell signaling. Here we discuss strategies for establishing the coding potential of putative lncRNAs and describe various functions of known micropeptides.


2003 ◽  
Vol 77 (20) ◽  
pp. 11268-11273 ◽  
Author(s):  
Nikolai Klymiuk ◽  
Mathias Müller ◽  
Gottfried Brem ◽  
Bernhard Aigner

ABSTRACT Endogenous retrovirus (ERV) sequences have been found in all mammals. In vitro and in vivo experiments revealed ERV activation and cross-species infection in several species. Sheep (Ovis aries) are used for various biotechnological purposes; however, they have not yet been comprehensively screened for ERV sequences. Therefore, the aim of the study was to classify the ERV sequences in the ovine genome (OERV) by analyzing the retroviral pro-pol sequences. Three OERV β families and nine OERV γ families were revealed. Novel open reading frames (ORF) in the amplified proviral fragment were found in one OERV β family and two OERV γ families. Hybrid OERV produced by putative recombination events were not detected. Quantitative analysis of the OERV sequences in the ovine genome revealed no relevant variations in the endogenous retroviral loads of different breeds. Expression analysis of different tissues from fetal and pregnant sheep detected mRNA from both gammaretrovirus families, showing ORF fragments. Thus, the release of retroviruses from sheep cells cannot be excluded.


2004 ◽  
Vol 78 (20) ◽  
pp. 11187-11197 ◽  
Author(s):  
Lisa M. Kattenhorn ◽  
Ryan Mills ◽  
Markus Wagner ◽  
Alexandre Lomsadze ◽  
Vsevolod Makeev ◽  
...  

ABSTRACT Proteins associated with the murine cytomegalovirus (MCMV) viral particle were identified by a combined approach of proteomic and genomic methods. Purified MCMV virions were dissociated by complete denaturation and subjected to either separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and in-gel digestion or treated directly by in-solution tryptic digestion. Peptides were separated by nanoflow liquid chromatography and analyzed by tandem mass spectrometry (LC-MS/MS). The MS/MS spectra obtained were searched against a database of MCMV open reading frames (ORFs) predicted to be protein coding by an MCMV-specific version of the gene prediction algorithm GeneMarkS. We identified 38 proteins from the capsid, tegument, glycoprotein, replication, and immunomodulatory protein families, as well as 20 genes of unknown function. Observed irregularities in coding potential suggested possible sequence errors in the 3′-proximal ends of m20 and M31. These errors were experimentally confirmed by sequencing analysis. The MS data further indicated the presence of peptides derived from the unannotated ORFs ORFc225441-226898 (m166.5) and ORF105932-106072. Immunoblot experiments confirmed expression of m166.5 during viral infection.


Sign in / Sign up

Export Citation Format

Share Document