scholarly journals Investigation of a Haptic Actuator Made with Magneto-Rheological Fluids for Haptic Shoes Applications

Actuators ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 5
Author(s):  
Yong Hae Heo ◽  
Sangkyu Byeon ◽  
Tae-Hoon Kim ◽  
In-Ho Yun ◽  
Jin Ryong Kim ◽  
...  

This paper presents a magneto-rheological (MR) actuator that can be easily inserted into haptic shoes and can haptically simulate the material properties of the ground. To increase the resistive force of the proposed actuator, we designed a movable piston having multiple operation modes of MR fluids. Further, the design of a solenoid coil was optimized to maximize the resistive force in a limited-sized MR actuator. Simulations were conducted to predict the actuation performance and to show that the magnetic flux flows well by forming a closed loop in the proposed actuator. The quantitative evaluation of the proposed actuator was investigated by measuring the resistive force as a function of the input current and its pressed depth. From the result, we found that the proposed actuator can create over 600 N by adjusting the input current.

Author(s):  
Tae-Heon Yang ◽  
Jeong-Hoi Koo ◽  
Sang-Youn Kim ◽  
Dong-Soo Kwon

This paper presents a miniature haptic actuator based on MR fluids, which is designed to convey realistic haptic sensations to users in small electronic devices. The proposed MR actuator can create various kinaesthetic sensations. The haptic sensation, which is generated in the form of resistive force, should vary according to the stroke of the actuator (or the pressed depth of the plunger). Thus, a sensing method for gauging the pressed depth should be integrated into the proposed actuator for demonstrating its real-world haptic application. To determine the pressed depth of the MR actuator, this study proposes an impedance sensing mechanism. The proposed sensing method measures the impedance change of the solenoid coil embedded in the actuator in the form of voltages to estimate the pressed depth. Using a prototype actuator, the sensing performance of the proposed sensing method, was evaluated. The results show that the sensitivity of the proposed impedance sensing method is sufficient to regulate the output resistive force over a small stroke range of the actuator.


Author(s):  
Semin Ryu ◽  
Jeong-Hoi Koo ◽  
Tae-Heon Yang ◽  
Dongbum Pyo ◽  
Ki-Uk Kyung ◽  
...  

This study presents a novel design of a miniature haptic actuator based on Magneto-Rheological (MR) fluids for mobile applications, and it evaluates the performance of a haptic actuator using a simulation model. The primary design goal for a haptic actuator for mobile applications is to miniaturize its size while generating realistic haptic sensations. To this end, this study proposes to design the MR actuator’s piston head (or plunger) in cone-shape and activate multiple modes of MR fluids (direct shear, flow and squeeze modes). Using a simulation model developed by integrating magnetic and force equations, the performance of a haptic actuator was evaluated in terms of the force (resistive force) produced by the actuator. The results show that a small actuator model, dimension of 10 mm (L) × 10 mm (W) × 6.5 mm (H), produced a maximum resistive force of about 5 N at 0.3 Watts, which is sufficient to provide force feedback to users.


Author(s):  
Ines Gilch ◽  
Tobias Neuwirth ◽  
Benedikt Schauerte ◽  
Nora Leuning ◽  
Simon Sebold ◽  
...  

AbstractTargeted magnetic flux guidance in the rotor cross section of rotational electrical machines is crucial for the machine’s efficiency. Cutouts in the electrical steel sheets are integrated in the rotor sheets for magnetic flux guidance. These cutouts create thin structures in the rotor sheets which limit the maximum achievable rotational speed under centrifugal forces and the maximum energy density of the rotating electrical machine. In this paper, embossing-induced residual stress, employing the magneto-mechanical Villari effect, is studied as an innovative and alternative flux barrier design with negligible mechanical material deterioration. The overall objective is to replace cutouts by embossings, increasing the mechanical strength of the rotor. The identification of suitable embossing geometries, distributions and methodologies for the local introduction of residual stress is a major challenge. This paper examines finely distributed pyramidal embossings and their effect on the magnetic material behavior. The study is based on simulation and measurements of specimen with a single line of twenty embossing points performed with different punch forces. The magnetic material behavior is analyzed using neutron grating interferometry and a single sheet tester. Numerical examinations using finite element analysis and microhardness measurements provide a more detailed understanding of the interaction of residual stress distribution and magnetic material properties. The results reveal that residual stress induced by embossing affects magnetic material properties. Process parameters can be applied to adjust the magnetic material deterioration and the effect of magnetic flux guidance.


Author(s):  
Maia R. Bageant ◽  
David E. Hardt

Microfluidic technologies hold a great deal of promise in advancing the medical field, but transitioning them from research to commercial production has proven problematic. We propose precision hot embossing as a process to produce high volumes of devices with low capital cost and a high degree of flexibility. Hot embossing has not been widely applied to precision forming of hard polymers at viable production rates. To this end we have developed experimental equipment capable of maintaining the necessary precision in forming parameters while minimizing cycle time. In addition, since equipment precision alone does not guarantee consistent product quality, our work also focuses on real-time sensing and diagnosis of the process. This paper covers both the basic details for a novel embossing machine, and the utilization of the force and displacement data acquired during the embossing cycle to diagnose the state of the material and process. The precision necessary in both the forming machine and the instrumentation will be covered in detail. It will be shown that variation in the material properties (e.g. thickness, glass transition temperature) as well as the degree of bulk deformation of the substrate can be detected from these measurements. If these data are correlated with subsequent downstream functional tests, a total measure of quality may be determined and used to apply closed-loop cycle-to-cycle control to the entire process. By incorporating automation and specialized precision equipment into a tabletop “microfactory” setting, we aim to demonstrate a high degree of process control and disturbance rejection for the process of hot embossing as applied at the micron scale.


1999 ◽  
Author(s):  
Mehdi Ahmadian ◽  
James C. Poynor ◽  
Jason M. Gooch

Abstract This study will examine the effectiveness of magneto-rheological (MR) dampers for controlling shock dynamics. Using a system that includes a 50-caliber rifle and a magneto-rheological damper, it is experimentally shown that MR dampers can be quite effective in controlling the compromise that commonly exists between shock forces and strokes across the shock absorber mechanism. A series of tests are conducted to demonstrate that different damping forces by the MR damper can result in different shock-force/stroke profiles. The test results further show that MR dampers can be used in a closed-loop system to adjust the shock loading characteristics in a manner that fits the dynamic system constraints and requirements.


2007 ◽  
Vol 546-549 ◽  
pp. 1673-1676 ◽  
Author(s):  
Wei Jia Meng ◽  
Zhan Wen Huang ◽  
Yan Ju Liu ◽  
Xiao Rong Wu ◽  
Yi Sun

Magnetorheological (MR) fluids are suspensions of micron sized ferromagnetic particles dispersed in varying proportions of a variety of non-ferromagnetic fluids. MR fluids exhibit rapid, reversible and significant changes in their rheological (mechanical) properties while subjected to an external magnetic field. In this paper, a double-plate magneto-rheological fluid (MRF) clutch with controllable torque output have been designed. Electromagnetic finite element analysis is used to optimize the design of the clutch by using the commercial FEA software ANSYS.


2005 ◽  
Vol 19 (07n09) ◽  
pp. 1121-1127 ◽  
Author(s):  
A. SHIBAYAMA ◽  
T. OTOMO ◽  
Y. AKAGAMI ◽  
K. SHIMADA ◽  
T. FUJITA

In this study, a magneto-rheological fluid dispersed by silica-coated iron was developed and its properties such as fluid viscosity (shear stress or shear rate) and abrasion were investigated. The metallic iron coated by silica dispersed in magneto-rheological fluid was prepared by H 2 reducing of precipitated magnetite ( Fe 3 O 4). Then, the magneto-rheological fluid (MR fluid) for the seal was prepared with silica-coated iron or carbonyl iron (HQ type; diameter of 1.6-1.9 10-6m) and two solvent oils i.e. silicon oil (SH200cv, 10000cSt) and CVT oil (T-CVTF, automobile transmission oil). It was observed that the MR fluid viscosity of CVT oil with HQ particles is lower in every fluid condition. Furthermore, the surface roughness of polyvinyl plate after abrasion test for MR fluid with silica coated iron and CVT oil as solvent was higher compared to the other types of MR fluids. The results indicated that carbonyl iron (spherical particles) and silica-coated iron particles dispersed in silicon oil are feasible to be used where the low abrasion in mechanics is required.


2012 ◽  
Vol 51 (6S) ◽  
pp. 06FK06
Author(s):  
Fumimasa Nomura ◽  
Tomoyuki Kaneko ◽  
Tomoyo Hamada ◽  
Akihiro Hattori ◽  
Kenji Yasuda

Sign in / Sign up

Export Citation Format

Share Document