scholarly journals Adaptive Control of Chaotic Signals: Investigated by Simulation Software and Real Electronic Circuits

Actuators ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 284
Author(s):  
Cheng-Hsiung Yang ◽  
Che-Lun Chang ◽  
Shih-Yu Li

Chaotic behavior is complicated, sensitive, and has the feature of great variety, which are the most potential signals to be applied in data encryption, secure communication, medical information protection, etc. As a consequence, in this paper, we try to propose three different ways to show our data generating results step by step, which means it can be proved effectively and used in practice: (1) Chaotic solutions simulated by MATLAB, (2) chaotic motion drawn via electronic circuits software Multisim, and (3) chaotic signal implemented on real electronic circuits with breadboard. In advance, following the same design principal, the adaptive chaotic signal is also designed and presented in the end of this article for further study, which provides a more flexible and variable chaotic signal to enhance the encryption effectiveness. The experimental results are extremely close to the two simulation results and can definitely be technically transferred to real encryption application.

2014 ◽  
Vol 644-650 ◽  
pp. 4216-4220
Author(s):  
Feng Liu

First of all, we investigate adaptive matrix projective synchronization of the chaotic system. Finally, this method is applied to secure communication through improved chaotic masking. The information signal is mixed with the chaotic signal before being transmitted, and is recovered without distortion through the synchronized receiver. Simulation results show that the scheme has a good performance.


Chaos is an ubiquitous phenomenon that arises in many natural and artificial systems where nonlinearity is present (Thompson & Stewart 1986; Moon 1992). Nowhere is this important and robust phenomenon more easily observed, studied and exploited than in electronic circuits. Three reasons for this can be identified. First, there exist exceedingly simple and inexpensive circuits costing less than a paperback, which are ideal for heuristic experimental investigations of the diverse chaotic phenomena that have been identified in the more complex systems of solid and fluid dynamics, chemical kinetics, etc. Second, the physics of the electronic devices used in these circuits is a well-understood and mature branch of electrical engineering. Excellent mathematical models exist, allowing the experimental observations to be reproduced by computer simulation (Parker & Chua 1989) with great accuracy; and the bifurcational structure of these nonlinear models can be analysed by using the new topological techniques of dynamical systems theory. It is indeed the case that no other chaotic physical systems are known which are amenable simultaneously to experimental, numerical and analytical studies, giving correlations which are not only qualitative but often quantitative to within 5%. Third, for applications which call for a source of real chaotic signals (such as secure communication systems and neural networks), electronic circuits provide the simplest and cheapest source of such physical signals. Moreover, such circuits can be readily mass-produced in practical applications as inexpensive integrated circuit chips


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 272
Author(s):  
Michal Melosik ◽  
Wieslaw Marszalek

We discuss chaos and its quality as measured through the 0-1 test for chaos. When the 0-1 test indicates deteriorating quality of chaos, because of the finite precision representations of real numbers in digital implementations, then the process may eventually lead to a periodic sequence. A simple method for improving the quality of a chaotic signal is to mix the signal with another signal by using the XOR operation. In this paper, such mixing of weak chaotic signals is considered, yielding new signals with improved quality (with K values from the 0-1 test close to 1). In some sense, such a mixing of signals could be considered as a two-layer prevention strategy to maintain chaos. That fact may be important in those applications when the hardware resources are limited. The 0-1 test is used to show the improved chaotic behavior in the case when a continuous signal (for example, from the Chua, Rössler or Lorenz system) intermingles with a discrete signal (for example, from the logistic, Tinkerbell or Henon map). The analysis is presented for chaotic bit sequences. Our approach can further lead to hardware applications, and possibly, to improvements in the design of chaotic bit generators. Several illustrative examples are included.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Jiuli Yin ◽  
Mengjiao Tian ◽  
Xiangchun Duan ◽  
Yongfen Zhang

AbstractChaotic signals are regarded as secure carriers for communication due to its high sensitivity to parameter and initial condition perturbations. This paper studies the problem of optical secure communication modeled by the perturbed nonlinear Schrödinger equation. First, we prove that the chaotic signal can be easily produced from the optical soliton signal when external perturbations are executed to the Schrodinger equation. Chaos synchronization is then proved to be accomplished between the derived system and the original system which are different in the first-order derivative terms. Furthermore, we analyze the effects of system parameters on the chaos synchronization. Numerical results show that smaller differences can lead to more rapid synchronization. We also find that changing system parameters can affect the speed of chaos synchronization.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1342
Author(s):  
Van Chien Pham ◽  
Jae-Hyuk Choi ◽  
Beom-Seok Rho ◽  
Jun-Soo Kim ◽  
Kyunam Park ◽  
...  

This paper presents research on the combustion and emission characteristics of a four-stroke Natural gas–Diesel dual-fuel marine engine at full load. The AVL FIRE R2018a (AVL List GmbH, Graz, Austria) simulation software was used to conduct three-dimensional simulations of the combustion process and emission formations inside the engine cylinder in both diesel and dual-fuel mode to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results were then compared and showed a good agreement with the measured values reported in the engine’s shop test technical data. The simulation results showed reductions in the in-cylinder pressure and temperature peaks by 1.7% and 6.75%, while NO, soot, CO, and CO2 emissions were reduced up to 96%, 96%, 86%, and 15.9%, respectively, in the dual-fuel mode in comparison with the diesel mode. The results also show better and more uniform combustion at the late stage of the combustions inside the cylinder when operating the engine in the dual-fuel mode. Analyzing the emission characteristics and the engine performance when the injection timing varies shows that, operating the engine in the dual-fuel mode with an injection timing of 12 crank angle degrees before the top dead center is the best solution to reduce emissions while keeping the optimal engine power.


2012 ◽  
Vol 433-440 ◽  
pp. 7287-7292
Author(s):  
You Hua Gao ◽  
Zeng Feng Lai ◽  
Xiao Ming Liu ◽  
Guo Wei Liu ◽  
Ye Wang

To analyze the transient response of transformer windings under very fast transient over-voltage (VFTO), multi-conductor transmission line (MTL) model based on the representation of transformer windings by its individual turns are established. Space discretization is needed for solving the time-domain telegraph equations of MTL. To calculate the voltage distributions along transformer windings, through combining the compact finite difference (CFD) theory and the backward differentiation formulas (BDF). Simulation software ATP is introduced, and the simulation results demonstrate that the proposed approach is feasible.


2013 ◽  
Vol 753-755 ◽  
pp. 1318-1323 ◽  
Author(s):  
Kwang Kyu Seo ◽  
Hong Kyu Kwon

In this research, Computer Aided Engineering (CAE) simulation was performed by using the simulation software (AnyCasting) in order to optimize casting design of an automobile part (Oil Pan_7G9E) which is well known and complicated to achieve a good casting layout. The simulation results were analyzed and compared carefully in order to apply them into the production die-casting mold. During the filling process, internal porosities caused by air entrap were predicted and reduced remarkably by the modification of the gate system and the configuration of overflow. With the solidification analysis, internal porosities caused by the solidification shrinkage were predicted and reduced by the modification of the gate system.


2009 ◽  
Vol 23 (32) ◽  
pp. 5949-5964 ◽  
Author(s):  
XINGYUAN WANG ◽  
MINGJUN WANG

This paper studies chaos synchronization via unidirectional coupling. The self-synchronization of Lorenz systems, modified coupled dynamos systems and hyperchaotic Chen systems is studied by three methods: the Lyapunov function method, the global synchronization method and the numerical calculation of the largest Lyapunov exponent method. In regard to application to communication, we show that via transmitting single signal the synchronization of the drive system and the response system can be achieved. An example of applying self-synchronization of hyperchaotic Chen systems to chaotic masking secure communication is presented in this paper. Simulation results show the effectiveness of the method.


Author(s):  
Hamza Sajjad Ahmad ◽  
Muhammad Junaid Arshad ◽  
Muhammad Sohail Akram

To send data over the network, devices need to authenticate themselves within the network. After authentication, the device will be able to send the data in-network. After authentication, secure communication of devices is an important task that is done with an encryption method. IoT network devices have a very small circuit with low resources and low computation power. By considering low power, less memory, low computation, and all the aspect of IoT devices, an encryption technique is needed that is suitable for this type of device. As IoT networks are heterogeneous, each device has different hardware properties, and all the devices are not on one scale. To make IoT networks secure, this paper starts with the secure authentication mechanism to verify the device that wants to be a part of the network. After that, an encryption algorithm is presented that will make the communication secure. This encryption algorithm is designed by considering all the important aspects of IoT devices (low computation, low memory, and cost).


Sign in / Sign up

Export Citation Format

Share Document