scholarly journals A Multi-Curvature, Variable Stiffness Soft Gripper for Enhanced Grasping Operations

Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 316
Author(s):  
Eun Jeong Song ◽  
Jung Soo Lee ◽  
Hyungpil Moon ◽  
Hyouk Ryeol Choi ◽  
Ja Choon Koo

For soft grippers to be applied in atypical industrial environments, they must conform to an object’s exterior shape and momentarily change their stiffness. However, many of the existing grippers have limitations with respect to these functions: they grasp an object with only a single curvature and a fixed stiffness. Consequently, those constraints limit the stability of grasping and the applications. This paper introduces a new multicurvature, variable-stiffness soft gripper. Inspired by the human phalanx and combining the phalanx structure and particle jamming, this work guarantees the required grasping functions. Unlike the existing soft pneumatic grippers with one curvature and one stiffness, this work tries to divide the pressurized actuating region into three parts to generate multiple curvatures for a gripper finger, enabling the gripper to increase its degrees of freedom. Furthermore, to prevent stiffness loss at an unpressurized segment, this work combines divided actuation and the variable-stiffness capability, which guarantee successful grasping actions. In summary, this gripper generates multiple grasping curvatures with the proper stiffness, enhancing its dexterity. This work introduces the new soft gripper’s design, analytical modeling, and fabrication method and verifies the analytic model by comparing it with FEM simulations and experimental results.

2007 ◽  
Vol 129 (4) ◽  
pp. 733-739 ◽  
Author(s):  
Emre Ozlu ◽  
Erhan Budak

In this part of the paper series, chatter experiments are conducted in order to verify the proposed stability models presented in the first part (Ozlu, E., and Budak, E., 2007, ASME J. Manuf. Sci. Eng., 129(4), pp. 726–732). Turning and boring chatter experiments are conducted for the cases where the tool or the workpiece is the most flexible component of the cutting system. In addition, chatter experiments demonstrating the effect of the insert nose radius on the stability limit are presented. Satisfactory agreement is observed between the analytical predictions and the experimental results.


Author(s):  
V.V. Nguyen ◽  

The paper discusses the scientific problem of controlling an air manipulation system and describes the experimental results of modeling the influence of disturbing influences on the stability of the manipulator movement with 3 degrees of freedom in the developed software system UAVManipulatorModeling.


Meccanica ◽  
2021 ◽  
Author(s):  
Dóra Patkó ◽  
Ambrus Zelei

AbstractFor both non-redundant and redundant systems, the inverse kinematics (IK) calculation is a fundamental step in the control algorithm of fully actuated serial manipulators. The tool-center-point (TCP) position is given and the joint coordinates are determined by the IK. Depending on the task, robotic manipulators can be kinematically redundant. That is when the desired task possesses lower dimensions than the degrees-of-freedom of a redundant manipulator. The IK calculation can be implemented numerically in several alternative ways not only in case of the redundant but also in the non-redundant case. We study the stability properties and the feasibility of a tracking error feedback and a direct tracking error elimination approach of the numerical implementation of IK calculation both on velocity and acceleration levels. The feedback approach expresses the joint position increment stepwise based on the local velocity or acceleration of the desired TCP trajectory and linear feedback terms. In the direct error elimination concept, the increment of the joint position is directly given by the approximate error between the desired and the realized TCP position, by assuming constant TCP velocity or acceleration. We investigate the possibility of the implementation of the direct method on acceleration level. The investigated IK methods are unified in a framework that utilizes the idea of the auxiliary input. Our closed form results and numerical case study examples show the stability properties, benefits and disadvantages of the assessed IK implementations.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Samuel F. Asokanthan ◽  
Soroush Arghavan ◽  
Mohamed Bognash

Effect of stochastic fluctuations in angular velocity on the stability of two degrees-of-freedom ring-type microelectromechanical systems (MEMS) gyroscopes is investigated. The governing stochastic differential equations (SDEs) are discretized using the higher-order Milstein scheme in order to numerically predict the system response assuming the fluctuations to be white noise. Simulations via Euler scheme as well as a measure of largest Lyapunov exponents (LLEs) are employed for validation purposes due to lack of similar analytical or experimental data. The response of the gyroscope under different noise fluctuation magnitudes has been computed to ascertain the stability behavior of the system. External noise that affect the gyroscope dynamic behavior typically results from environment factors and the nature of the system operation can be exerted on the system at any frequency range depending on the source. Hence, a parametric study is performed to assess the noise intensity stability threshold for a number of damping ratio values. The stability investigation predicts the form of threshold fluctuation intensity dependence on damping ratio. Under typical gyroscope operating conditions, nominal input angular velocity magnitude and mass mismatch appear to have minimal influence on system stability.


2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Alexander Agboola-Dobson ◽  
Guowu Wei ◽  
Lei Ren

Recent advancements in powered lower limb prostheses have appeased several difficulties faced by lower limb amputees by using a series-elastic actuator (SEA) to provide powered sagittal plane flexion. Unfortunately, these devices are currently unable to provide both powered sagittal plane flexion and two degrees of freedom (2-DOF) at the ankle, removing the ankle’s capacity to invert/evert, thus severely limiting terrain adaption capabilities and user comfort. The developed 2-DOF ankle system in this paper allows both powered flexion in the sagittal plane and passive rotation in the frontal plane; an SEA emulates the biomechanics of the gastrocnemius and Achilles tendon for flexion while a novel universal-joint system provides the 2-DOF. Several studies were undertaken to thoroughly characterize the capabilities of the device. Under both level- and sloped-ground conditions, ankle torque and kinematic data were obtained by using force-plates and a motion capture system. The device was found to be fully capable of providing powered sagittal plane motion and torque very close to that of a biological ankle while simultaneously being able to adapt to sloped terrain by undergoing frontal plane motion, thus providing 2-DOF at the ankle. These findings demonstrate that the device presented in this paper poses radical improvements to powered prosthetic ankle-foot device (PAFD) design.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xiaohui Liu ◽  
Ming Zou ◽  
Chuan Wu ◽  
Mengqi Cai ◽  
Guangyun Min ◽  
...  

A new quad bundle conductor galloping model considering wake effect is proposed to solve the problem of different aerodynamic coefficients of each subconductor of iced quad bundle conductor. Based on the quasistatic theory, a new 3-DOF (three degrees of freedom) galloping model of iced quad bundle conductors is established, which can accurately reflect the energy transfer and galloping of quad bundle conductor in three directions. After a series of formula derivations, the conductor stability judgment formula is obtained. In the wind tunnel test, according to the actual engineering situation, different variables are set up to accurately simulate the galloping of iced quad bundle conductor under the wind, and the aerodynamic coefficient is obtained. Finally, according to the stability judgment formula of this paper, calculate the critical wind speed of conductor galloping through programming. The dates of wind tunnel test and calculation in this paper can be used in the antigalloping design of transmission lines.


Author(s):  
Federico Cheli ◽  
Marco Bocciolone ◽  
Marco Pezzola ◽  
Elisabetta Leo

The study of motorcycle’s stability is an important task for the passenger’s safety. The range of frequencies involved for the handling stability is lower than 10 Hz. A numerical model was developed to access the stability of a motorcycle vehicle in this frequency range. The stability is analysed using a linearized model around the straight steady state condition. In this condition, the vehicle’s vertical and longitudinal motion are decoupled, hence the model has only four degrees of freedom (steering angle, yaw angle, roll angle and lateral translation), while longitudinal motion is imposed. The stability was studied increasing the longitudinal speed. The input of the model can be either a driver input manoeuvre (roll angle) or a transversal component of road input able to excite the vibration modes. The driver is introduced in the model as a steering torque that allows the vehicle to follow a reference trajectory. To validate the model, experimental tests were done. To excite the vehicle modes, the driver input was not taken into account considering both the danger for the driver and the repeatability of the manoeuvre. Two different vehicle configurations were tested: vehicle 1 is a motorcycle [7] and vehicle 2 is a scooter. Through the use of the validated model, a sensitivity analysis was done changing structural (for example normal trail, steering angle, mass) and non structural parameters (for example longitudinal speed).


Actuators ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Taehoon Lee ◽  
Inwoo Kim ◽  
Yoon Su Baek

Lower limb exoskeleton robots help with walking movements through mechanical force, by identifying the wearer’s walking intention. When the exoskeleton robot is lightweight and comfortable to wear, the stability of walking increases, and energy can be used efficiently. However, because it is difficult to implement the complex anatomical movements of the human body, most are designed simply. Due to this, misalignment between the human and robot movement causes the wearer to feel uncomfortable, and the stability of walking is reduced. In this paper, we developed a two degrees of freedom (2DoF) ankle exoskeleton robot with a subtalar joint and a talocrural joint, applying a four-bar linkage to realize the anatomical movement of a simple 1DoF structure mainly used for ankles. However, bidirectional tendon-driven actuators (BTDAs) do not consider the difference in a length change of both cables due to dorsiflexion (DF) and plantar flexion (PF) during walking, causing misalignment. To solve this problem, a BTDA was developed by considering the length change of both cables. Cable-driven actuators and exoskeleton robot systems create uncertainty. Accordingly, adaptive control was performed with a proportional-integral-differential neural network (PIDNN) controller to minimize system uncertainty.


Author(s):  
V Domala ◽  
R Sharma

This paper presents the design and development of an efficient modular ‘Computer Simulation Model (CSM)’ for response analysis of a moored semi-submersible. The computer simulation model is designed in two split models (i.e. computational and experimental models) and each of these models consists of various modules. The modules are developed from basic governing equations related to motion and modules are integrated and we aim for a seamless integration. The moored semi-submersible is represented mathematically as six degrees of freedom dynamic system and the coupling effects between the structure and mooring lines are considered. The basic geometric configuration of semi- submersible is modelled and analyzed for stability computations in MS-Excel*TM and then the basic governing equations related to motion are modelled mathematically in a module and solved numerically with Ansys-AQWA**TM. The computational model is validated and verified with some available experimental results. The CSM is utilized to study the surge and sway responses with respect to the horizontal range of mooring lines and our results show good validation with the existing experimental results. Our presented results show that the fibre wires have minimum steady state response in surge and sway degrees of freedom as compared with the steel wires. However, they have large drift as compared with steel wires. Finally, we show that the computer simulation model can help in detailed analysis of responses and results can be utilized for design and development of new age semi-submersibles for optimum performances for a given set of parameters.


Author(s):  
Ruigui Pan ◽  
Huw G. Davies

Abstract Nonstationary response of a two-degrees-of-freedom system with quadratic coupling under a time varying modulated amplitude sinusoidal excitation is studied. The nonlinearly coupled pitch and roll ship model is based on Nayfeh, Mook and Marshall’s work for the case of stationary excitation. The ship model has a 2:1 internal resonance and is excited near the resonance of the pitch mode. The modulated excitation (F0 + F1 cos ωt) cosQt is used to model a narrow band sea-wave excitation. The response demonstrates a variety of bifurcations, loss of stability, and chaos phenomena that are not present in the stationary case. We consider here the periodically modulated response. Chaotic response of the system is discussed in a separate paper. Several approximate solutions, under both small and large modulating amplitudes F1, are obtained and compared with the exact one. The stability of an exact solution with one mode having zero amplitude is studied. Loss of stability in this case involves either a rapid transition from one of two stable (in the stationary sense) branches to another, or a period doubling bifurcation. From Floquet theory, various stability boundary diagrams are obtained in F1 and F0 parameter space which can be used to predict the various transition phenomena and the period-2 bifurcations. The study shows that both the modulation parameters F1 and ω (the modulating frequency) have great effect on the stability boundaries. Because of the modulation, the stable area is greatly expanded, and the stationary bifurcation point can be exceeded without loss of stability. Decreasing ω can make the stability boundary very complicated. For very small ω the response can make periodic transitions between the two (pseudo) stable solutions.


Sign in / Sign up

Export Citation Format

Share Document