Numerical and Experimental Approaches to Investigate the Stability of a Motorcycle Vehicle

Author(s):  
Federico Cheli ◽  
Marco Bocciolone ◽  
Marco Pezzola ◽  
Elisabetta Leo

The study of motorcycle’s stability is an important task for the passenger’s safety. The range of frequencies involved for the handling stability is lower than 10 Hz. A numerical model was developed to access the stability of a motorcycle vehicle in this frequency range. The stability is analysed using a linearized model around the straight steady state condition. In this condition, the vehicle’s vertical and longitudinal motion are decoupled, hence the model has only four degrees of freedom (steering angle, yaw angle, roll angle and lateral translation), while longitudinal motion is imposed. The stability was studied increasing the longitudinal speed. The input of the model can be either a driver input manoeuvre (roll angle) or a transversal component of road input able to excite the vibration modes. The driver is introduced in the model as a steering torque that allows the vehicle to follow a reference trajectory. To validate the model, experimental tests were done. To excite the vehicle modes, the driver input was not taken into account considering both the danger for the driver and the repeatability of the manoeuvre. Two different vehicle configurations were tested: vehicle 1 is a motorcycle [7] and vehicle 2 is a scooter. Through the use of the validated model, a sensitivity analysis was done changing structural (for example normal trail, steering angle, mass) and non structural parameters (for example longitudinal speed).

Author(s):  
Tian Mi ◽  
Gabor Stepan ◽  
Denes Takacs ◽  
Nan Chen

A 5-degrees-of-freedom shimmy model is established to analyse the dynamic responses of an electric vehicle with independent suspensions. Tyre elasticity is considered by means of Pacejka’s magic formula. Under the nonslip assumption for the leading contact point, tyre–road constraint equations are derived. Numerical simulation is conducted with different structural parameters and initial conditions to observe the shimmy phenomenon. Simulation results indicate that Hopf bifurcation occurs at a certain vehicle forward speed. Moreover, suspension structural parameters, such as caster angle, affect wheel shimmy. The linearized model of the system presents the stability boundaries, which agree with the simulation results. The results of this study not only provide a theoretical reference for shimmy attenuation, but also validate the effectiveness of the provided model, which can be used in further dynamic analysis of vehicle shimmy.


Robotica ◽  
2014 ◽  
Vol 33 (9) ◽  
pp. 1926-1947 ◽  
Author(s):  
Jorge Orrante-Sakanassi ◽  
Víctor Santibánez ◽  
Víctor M. Hernández-Guzmán

SUMMARYIn this paper we propose new tuning conditions for three saturated nonlinear proportional-integral-derivative (PID) global regulators with bounded torques for robot manipulators, which have been presented previously in the literature. The motivation of this work relies on the fact that the tuning conditions presented previously in the literature for assuring global asymptotic stability are so restrictive that it had been impossible, until now, to carry out experimental tests. New tuning criteria of unsaturated PID controllers for robot manipulators with stability conditions more relaxed than those presented previously in the literature have been proposed recently in some works by the authors. This was achieved by setting the stability conditions as expressions that have to be satisfied at each joint instead of general conditions for the whole robot. Based on this idea, we now obtain stability conditions for saturated global PID controllers which are so relaxed that they have allowed to perform, by the first time, experimental tests using controller gains which completely satisfy the proposed stability conditions. The results of such experiments are presented in this paper, where we have used a two-degrees-of-freedom robot manipulator.


2010 ◽  
Vol 458 ◽  
pp. 192-199
Author(s):  
Xi Bin Dong ◽  
Hao Wu

The rotating platform is one of important components of the platform-based lifting picking vehicle, which guarantees that the vehicle works well in mountainous terrain. Based on a brief introduction of structural composition and function of rotating platform, the deflection mechanism of rotating platform was analyzed theoretically. By analyzing the structural composition and calculating DOF (Degrees of Freedom), the reasonableness of the scheme was verified and the kinematics equations were established. According to the stability requirements of picking vehicle and the characteristics of operating environment in mountain, the design theory for the support system of rotating platform and its performance requirements were discussed, and further the important structural parameters and design methods was studied.


Author(s):  
Z L Jin ◽  
J S Weng ◽  
H Y Hu

In this paper, a linear vehicle model with three degrees of freedom is established to study the stability of vehicle rollover due to critical driving manoeuvres. From the linear vehicle model, the stability conditions are determined on the basis of the Routh-Hurwitz criterion, and a so-called dynamic stability factor is defined to reveal the effects of system parameters on the stability of vehicle rollover. In order to demonstrate the theoretical results, two numerical examples are given for the rollover of a sport utility vehicle in cornering and lane-change manoeuvres at a high speed and large steering angle. The stability regions are shown with respect to the vehicle speed and the vehicle parameters, such as the longitudinal distance from the centre of gravity to the front axle, and the steering angle of the front wheel.


Author(s):  
Alberto Doria ◽  
Luca Taraborrelli ◽  
Nicola Segliani

In this paper the effect of front fork compliance on uncontrolled bicycle stability is analyzed. First the benchmark model of a bicycle is improved to take into account either torsion compliance or bending compliance of front fork, a lumped element approach is adopted introducing additional joints restrained by rotational springs and dampers. Two models having three degrees of freedom are developed and implemented in MATLAB codes to perform stability analysis. Then series of experimental tests are carried out on an advanced carbon fork and a standard steel fork, the modal analysis approach is adopted. Experimental methods and results are presented and discussed. A specific method is developed for identifying the stiffness and damping properties from the bending and torsion modes of the forks. Results obtained with the proposed method agree with data presented in literature. Finally, the identified stiffness and damping parameters are implemented in the simulation codes and some numerical simulations are carried out. Results presented in the paper show a small influence of torsion compliance on stability and a large influence of bending compliance on high speed stability.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 795
Author(s):  
Xiaochao Tian ◽  
Yuze Sun ◽  
Zhiyao Li ◽  
Hu Wang ◽  
Zhicong Wang ◽  
...  

This paper describes the design of a piezoelectric-driven hydraulically amplified Braille-flexible bump device that enables the flexible formation of Braille characters. A piezoelectric vibrator is used to excite fluid resonance in a cavity, and displacement is realized by compressing the fluid, allowing Braille character dots to be formed. First, the structural design and working principle of the device, as well as the method used to drive the fluid, are explained. Expressions for the output displacement and amplification ratio of the flexible film and piezoelectric vibrator are then obtained through kinetic analysis of the system unit. Subsequently, the structural parameters that affect the output displacement and the liquid amplification are described. Finally, experimental tests of the system are explained. The results indicate that the output displacement of the contact formed by the flexible film reaches 0.214 mm, satisfying the requirements of the touch sensitivity standard for the blind, when the fluid cavity diameter measures 31 mm and the resonance frequency is 375.4 Hz. The corresponding water discharge is 8.8 mL. This study proves that constructing a Braille bump device in this way is both feasible and effective.


Author(s):  
Qiang Cheng ◽  
Baobao Qi ◽  
Hongyan Chu ◽  
Ziling Zhang ◽  
Zhifeng Liu ◽  
...  

The combination of sliding/rolling motion can influence the degree of precision degradation of ball screw. Precision degradation modeling and factors analysis can reveal the evolution law of ball screw precision. This paper presents a precision degradation model for factors analysis influencing precision due to mixed sliding-rolling motion. The precision loss model was verified through the comparison of theoretical models and experimental tests. The precision degradation due to rolling motion between the ball and raceway accounted for 29.09% of the screw precision loss due to sliding motion. Additionally, the total precision degradation due to rolling motion accounted for 21.03% of the total sliding precision loss of the screw and nut, and 17.38% of the overall ball screw precision loss under mixed sliding-rolling motion. In addition, the effects of operating conditions and structural parameters on precision loss were analyzed. The sensitivity coefficients of factors influencing were used to quantitatively describe impact degree on precision degradation.


2021 ◽  
pp. 1-31
Author(s):  
S.H. Derrouaoui ◽  
Y. Bouzid ◽  
M. Guiatni

Abstract Recently, transformable Unmanned Aerial Vehicles (UAVs) have become a subject of great interest in the field of flying systems, due to their maneuverability, agility and morphological capacities. They can be used for specific missions and in more congested spaces. Moreover, this novel class of UAVs is considered as a viable solution for providing flying robots with specific and versatile functionalities. In this paper, we propose (i) a new design of a transformable quadrotor with (ii) generic modeling and (iii) adaptive control strategy. The proposed UAV is able to change its flight configuration by rotating its four arms independently around a central body, thanks to its adaptive geometry. To simplify and lighten the prototype, a simple mechanism with a light mechanical structure is proposed. Since the Center of Gravity (CoG) of the UAV moves according to the desired morphology of the system, a variation of the inertia and the allocation matrix occurs instantly. These dynamics parameters play an important role in the system control and its stability, representing a key difference compared with the classic quadrotor. Thus, a new generic model is developed, taking into account all these variations together with aerodynamic effects. To validate this model and ensure the stability of the designed UAV, an adaptive backstepping control strategy based on the change in the flight configuration is applied. MATLAB simulations are provided to evaluate and illustrate the performance and efficiency of the proposed controller. Finally, some experimental tests are presented.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1468
Author(s):  
Luis Nagua ◽  
Carlos Relaño ◽  
Concepción A. Monje ◽  
Carlos Balaguer

A soft joint has been designed and modeled to perform as a robotic joint with 2 Degrees of Freedom (DOF) (inclination and orientation). The joint actuation is based on a Cable-Driven Parallel Mechanism (CDPM). To study its performance in more detail, a test platform has been developed using components that can be manufactured in a 3D printer using a flexible polymer. The mathematical model of the kinematics of the soft joint is developed, which includes a blocking mechanism and the morphology workspace. The model is validated using Finite Element Analysis (FEA) (CAD software). Experimental tests are performed to validate the inverse kinematic model and to show the potential use of the prototype in robotic platforms such as manipulators and humanoid robots.


Meccanica ◽  
2021 ◽  
Author(s):  
Dóra Patkó ◽  
Ambrus Zelei

AbstractFor both non-redundant and redundant systems, the inverse kinematics (IK) calculation is a fundamental step in the control algorithm of fully actuated serial manipulators. The tool-center-point (TCP) position is given and the joint coordinates are determined by the IK. Depending on the task, robotic manipulators can be kinematically redundant. That is when the desired task possesses lower dimensions than the degrees-of-freedom of a redundant manipulator. The IK calculation can be implemented numerically in several alternative ways not only in case of the redundant but also in the non-redundant case. We study the stability properties and the feasibility of a tracking error feedback and a direct tracking error elimination approach of the numerical implementation of IK calculation both on velocity and acceleration levels. The feedback approach expresses the joint position increment stepwise based on the local velocity or acceleration of the desired TCP trajectory and linear feedback terms. In the direct error elimination concept, the increment of the joint position is directly given by the approximate error between the desired and the realized TCP position, by assuming constant TCP velocity or acceleration. We investigate the possibility of the implementation of the direct method on acceleration level. The investigated IK methods are unified in a framework that utilizes the idea of the auxiliary input. Our closed form results and numerical case study examples show the stability properties, benefits and disadvantages of the assessed IK implementations.


Sign in / Sign up

Export Citation Format

Share Document