scholarly journals Modeling and Investigation of a Turboprop Hybrid Electric Propulsion System

Aerospace ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 123 ◽  
Author(s):  
Maria Cameretti ◽  
Andrea Del Pizzo ◽  
Luigi Di Noia ◽  
Michele Ferrara ◽  
Ciro Pascarella

Hybrid electric propulsion in the aviation field is becoming an effective alternative propulsion technology with potential advantages, including fuel savings, lower pollution, and reduced noise emission. On the one hand, the aeroengine manufacturers are working to improve fuel consumption and reduce pollutant emissions with new combustion systems; on the other hand, much attention is given to reducing the weight of the batteries increasing the energy density. Hybrid electric propulsion systems (HEPS) can take advantage of the synergy between two technologies by utilizing both internal combustion engines (ICEs) and electric motors (EMs) together, each operating at their respective optimum conditions. In the present work, some numerical investigations were carried out by using a zero-dimensional code able to simulate the flight mission of a turboprop aircraft, comparing fuel consumption and pollutant emissions of the original engine with other two smaller gas turbines working in hybrid configuration. An algorithm has been implemented to calculate the weight of the batteries for the different configurations examined, evaluating the feasibility of the hybrid propulsion system in terms of number of non-revenue passengers.

2019 ◽  
Vol 92 (5) ◽  
pp. 727-736
Author(s):  
Leonardo Machado ◽  
Jay Matlock ◽  
Afzal Suleman

Purpose This paper aims to experimentally evaluate the performance of a parallel hybrid propulsion system for use in small unmanned aerial vehicles (UAVs). Design/methodology/approach The objective is to combine all the individual components of the hybrid electric propulsion system (HEPS) into a modular test bench to characterize the performance of a parallel hybrid propulsion system, and to evaluate a rule-based controller based on the ideal operating line concept for the control of the power plant. Electric motor (EM) designed to supplement the power of the internal combustion engine (ICE) to reduce the overall fuel consumption, with the supervisory controller optimizing ICE torque. Findings The EM was able to supplement the power of the ICE to reduce fuel consumption, and proved the capability of acting as a generator to recharge the batteries drawing from ICE power. Furthermore, the controller showed that it is possible to reduce the fuel consumption with a HEPS when compared to its gasoline counterpart by running simulated representative UAV missions. The findings also highlighted the challenges to build and integrate the HEPS in small UAVs. Originality/value The modularity of the test bench allows each component to be changed to assess its impact on the performance of the system. This allows for further exploration and improvements of the HEPS in a controlled environment.


2021 ◽  
Vol 312 ◽  
pp. 11005
Author(s):  
Alberto Amerini ◽  
Leonardo Langone ◽  
Riccardo Vadi ◽  
Antonio Andreini

The increase in air traffic expected in the next years must be accompanied by innovation to ensure the lowest possible environmental impact. Hybrid electric-thermal propulsion systems are currently being investigated and could represent a breakthrough for environmental sustainability in the sector. However, the transition to electric propulsion remains challenging due to the current level of energy density related to storage systems, the additional components associated with power conversion and control systems, not to mention the cost of all the associated equipment. The purpose of this study is to carry out a preliminary assessment of a hybrid propulsion system for a short-mid range aircraft. This study investigates the series hybrid configuration, where a turboshaft, a high temperature superconducting (HTS) electric motor, batteries and power converters interact to provide the necessary propulsion for flight. A zero-dimensional procedure is developed to estimate the mass and efficiency of the powertrain components for a selected flight mission. Thermal engines are modeled with the low-order code and coupled with the components of the electric system through a python routine. A comparison in terms of weight and emissions is reported for the designed hybrid propulsion system and the conventional one. The analysis shows that the weight of the two propulsion systems is similar but, the presence of batteries, even considering a higher level of technology than the current one, leads to a significant increase in the weight of the hybrid aircraft. The second part of the study focuses on pollutant emissions, showing that the hybrid system can reduce CO2 emissions by 58% and NOx emissions by 68% compared to the conventional system. Despite the excellent premise, the reduction in payload for the hybrid aircraft causes a reduction in pollutant emissions per passenger only for NOx. For this reason, further technological improvement is needed to make hybrid propulsion advantageous in terms of both payload and pollutant emissions.


2020 ◽  
Vol 10 (2) ◽  
pp. 61-74
Author(s):  
Murat Bayraktar ◽  
Güldem A. Cerit

Many improvements are performed in the maritime industry to ensure sustainability and energy efficiency. The use of hybrid propulsion systems (HPS) in marine vessels constitutes one of the developments in this field. In this study,both economic and environmental benefits are targeted. The study aims to reduce the high fuel consumption of the engine per unit power at low loads and minimization of emissions by sourcing them from main engine by HPS. Overcoming the limitations of Annex VI (Prevention of Air Pollution from Ships) of International Convention for the Prevention of Pollution from Ships (MARPOL) are desired and the research hopes for a beneficial result on Energy Efficiency Measures such as Energy Efficiency Operational Indicator (EEOI). A comprehensive study is accomplished on the hybrid propulsion system components and the keywords used in the literature review are revealed. Furthermore, the articles that have “efficiency”, “vessel”, “propulsion” and “marine” topics published in Web of Science (WOS) between 1975-2020 are examined and 44 studies are obtained. The studies that have been reached are analyzed and interests of them are collect under the 18 heading and the focal point of each study is highlighted in article. According to the results, the hybrid system provides low fuel consumption, minimizes emissions and  costs, complies with the regulations of the International Maritime Organization, uses renewable energy sources, encourages the use of electric motors in addition to internal combustion engines, increases the efficiency of energy storage systems among other things. This article will be a significant resource for academicians, experts and companies on the Hybrid propulsion system in setting their focus.   Keywords: Hybrid propulsion, Energy saving, Global warming.


Author(s):  
Michael Schneider ◽  
Jens Dickhoff ◽  
Karsten Kusterer ◽  
Wilfried Visser

Abstract In the recent decades, civil aviation was growing 4.7% per annum. In order to reduce emissions promoting the global warming process, alternative propulsion systems are needed. Full-electric propulsion systems in aviation might have the potential for emission-free flights using renewable energy. However, several research efforts indicate electric propulsion only seems feasible for small aircraft. Especially due to the low energy density of batteries compared to fossil fuels. For this reason, hybrid propulsion systems came into focus, combining the benefits of all-electric and conventional propulsion system concepts. It is also considered as bridging technology, system test and basis for component development — and therewith paves the way towards CO2 free aviation. In the ‘HyFly’ project (supported by the German Luftfahrtforschungsprogramm LuFo V-3), the potential of a hybrid electric concept for a short/mid-range 19 PAX aircraft is assessed — not only on system but also on single component basis. In a recent study, the propulsion architecture and the operating mode of the gas turbine and the electric components have been defined [1]. In this paper, the advantages of the hybrid propulsion architecture and a qualitative assessment of component life are presented. Methods for life time prediction for the aircraft engine, the electric motor, the reluctance generator and the battery are discussed. The impact of turbine inlet temperature on life consumption is analyzed. The life cycle of the aircraft engine and the electric components including gradual component deterioration and consequent performance degradation is simulated by using an in-house gas turbine simulation tool (GTPsim). Therefore, various effects on electric propulsion system can be predicted for the entire drivetrain system in less than one hour.


Volume 2 ◽  
2004 ◽  
Author(s):  
Massimo Feola ◽  
Fabrizio Martini ◽  
Stefano Ubertini

Over the last few decades a tremendous effort has been made to reduce road vehicles engines contribution to air pollution and fuel consumption. Due to the more stringent limits imposed by governments, various manufactures started working in the incorporation of alternative powertrain configurations, such as pure electric vehicles (EV), hybrid electric vehicles (HEV) and fuel cell vehicles (FCV), in the automotive consumer market. In order to appreciate the advantages and disadvantages of these new vehicles over conventional vehicles a comparison must be performed in terms of efficiency and pollutant emissions. However, hybrid vehicles comprise many components with at least two different energy conversion devices (i.e. internal combustion engine and electric machine) drawing energy from at least two different energy storage devices (i.e. fuel tank and battery). In recent times, many hybrid propulsion system configurations have emerged and many others can be imagined comprising multiple reversible and irreversible energy paths. Therefore, considering that in a hybrid vehicle at least two different forms of energy (i.e. fuel chemical energy and electricity) are consumed, fuel consumption alone is no more sufficient to give a measure of the effectiveness of a hybrid propulsion system. This paper presents a first attempt to give a general mathematical form of the traction energy, the global efficiency and the specific fuel consumption of a hybrid electric vehicle that recovers as particular cases the thermal vehicle and the series hybrid electric vehicle. To evaluate the efficiency of the generic propulsion system the complete process from fuel energy and electricity to power available at the wheels is considered. The introduced concept of equivalent fuel consumption can be the basis for the comparison between road vehicles whatever the powertrain is pure thermal or hybrid. In order to get a better understanding of the mathematical analysis and its potential effectiveness some numerical simulations of hybrid vehicles virtual prototypes are performed through a suitable simulation model. The aim of the present analysis is to provide an instrument that allow a quick evaluation of the performances of hybrid electric vehicles.


2016 ◽  
Vol Special edition (1) ◽  
pp. 131-148
Author(s):  
Vedran Mrzljak ◽  
Tomislav Mrakovčić

Diesel-electric ship propulsion is a frequent shipowners choice nowadays, especially on passengerships. Despite many diesel engines advantages, their primary disadvantage is emission of pollutants. As environmental standards become more stringent, the question of optimal alternative to diesel-electric propulsion arises. COGES (COmbined Gas turbine Electric and Steam) propulsion system is one of the proposals for alternative propulsion system, primarily due to significant reduction of pollutant emissions. On the other hand, gas turbines have higher specific fuel consumption in comparison with diesel engines what represents their noticeable disadvantage. However, some analyzes suggested that COGES propulsion system could be still cost-effective in comparison to diesel-electric propulsion, particularly on passenger ships where higher initial investment can be compensated by increasing the number of passenger cabins. This paper shows a comparison of above mentioned propulsion systems, which can be useful for the optimal ship propulsion system selection


2021 ◽  
pp. 146808742110163
Author(s):  
Sadi Tavakoli ◽  
Kamyar Maleki Bagherabadi ◽  
Jesper Schramm ◽  
Eilif Pedersen

As the emission legislation becomes further constraining, all manufacturers started to fulfill the future regulations about the prime movers in the market. Lean-burn gas engines operating under marine applications are also obligated to enhance the performance with a low emission level. Lean-burn gas engines are expressed as a cleaner source of power in steady loading than diesel engines, while in transient conditions of sea state, the unsteadiness compels the engine to respond differently than in the steady-state. This response leads to higher fuel consumption and an increase in emission formation. In order to improve the stability of the engine in transient conditions, this study presents a concept implementing a hybrid configuration in the propulsion system. An engine model is developed and validated in a range of load and speed by comparing it with the available measured data. The imposed torque into the developed engine model is smoothed out by implementing the hybrid concept, and its influence on emission reduction is discussed. It is shown that with the hybrid propulsion system, the NOX reduces up to 40% because of the maximum load reduction. Moreover, eliminating the low load operation by a Power Take In during incomplete propeller immersion, the methane slip declines significantly due to combustion efficiency enhancement.


2021 ◽  
Vol 9 (2) ◽  
pp. 186
Author(s):  
Francesco Mauro ◽  
Elia Ghigliossi ◽  
Vittorio Bucci ◽  
Alberto Marinó

Nowadays, sustainable navigation is becoming a trending topic not only for merchant ships but also for pleasure vessels such as motoryachts. Therefore, the adoption of a hybrid-electric propulsion system and the installation of on-board storage devices could increase the greenness of a megayacht. This paper analyses the performance of three commercial propulsive solutions, using a dynamic operative profile and considering the influences of the smart berthing infrastructures. Results compare the yearly fuel consumptions of the analysed configurations for a reference megayacht.


Author(s):  
George M. Koutsothanasis ◽  
Anestis I. Kalfas ◽  
Georgios Doulgeris

This paper presents the benefits of the more electric vessels powered by hybrid engines and investigates the suitability of a particular prime-mover for a specific ship type using a simulation environment which can approach the actual operating conditions. The performance of a mega yacht (70m), powered by two 4.5MW recuperated gas turbines is examined in different voyage scenarios. The analysis is accomplished for a variety of weather and hull fouling conditions using a marine gas turbine performance software which is constituted by six modules based on analytical methods. In the present study, the marine simulation model is used to predict the fuel consumption and emission levels for various conditions of sea state, ambient and sea temperatures and hull fouling profiles. In addition, using the aforementioned parameters, the variation of engine and propeller efficiency can be estimated. Finally, the software is coupled to a creep life prediction tool, able to calculate the consumption of creep life of the high pressure turbine blading for the predefined missions. The results of the performance analysis show that a mega yacht powered by gas turbines can have comparable fuel consumption with the same vessel powered by high speed Diesel engines in the range of 10MW. In such Integrated Full Electric Propulsion (IFEP) environment the gas turbine provides a comprehensive candidate as a prime mover, mainly due to its compactness being highly valued in such application and its eco-friendly operation. The simulation of different voyage cases shows that cleaning the hull of the vessel, the fuel consumption reduces up to 16%. The benefit of the clean hull becomes even greater when adverse weather condition is considered. Additionally, the specific mega yacht when powered by two 4.2MW Diesel engines has a cruising speed of 15 knots with an average fuel consumption of 10.5 [tonne/day]. The same ship powered by two 4.5MW gas turbines has a cruising speed of 22 knots which means that a journey can be completed 31.8% faster, which reduces impressively the total steaming time. However the gas turbine powered yacht consumes 9 [tonne/day] more fuel. Considering the above, Gas Turbine looks to be the only solution which fulfills the next generation sophisticated high powered ship engine requirements.


Sign in / Sign up

Export Citation Format

Share Document