scholarly journals Identification of In-Flight Wingtip Folding Effects on the Roll Characteristics of a Flexible Aircraft

Aerospace ◽  
2019 ◽  
Vol 6 (6) ◽  
pp. 63 ◽  
Author(s):  
Gaétan Dussart ◽  
Sezsy Yusuf ◽  
Mudassir Lone

Wingtip folding is a means by which an aircraft’s wingspan can be extended, allowing designers to take advantage of the associated reduction in induced drag. This type of device can provide other benefits if used in flight, such as flight control and load alleviation. In this paper, the authors present a method to develop reduced order flight dynamic models for in-flight wingtip folding, which are suitable for implementation in real-time pilot-in-the-loop simulations. Aspects such as the impact of wingtip size and folding angle on aircraft roll dynamics are investigated along with failure scenarios using a time domain aeroservoelastic framework and an established system identification method. The process discussed in this paper helps remove the need for direct connection of complex physics based models to engineering flight simulators and the need for tedious programming of large look-up-tables in simulators. Instead, it has been shown that a generic polynomial model for roll aeroderivatives can be used in small roll perturbation conditions to simulate the roll characteristics of an aerodynamic derivative based large transport aircraft equipped with varying fold hinge lines and tip deflections. Moreover, the effects of wing flexibility are also considered.

Author(s):  
Oleksandr Andrienko ◽  
Mykola Huchenko ◽  
Volodymyr Zinchenko ◽  
Oleksandr Zhorniak

Urgency of the research. Flight safety is an actual practical issue which solving influences the future of Ukraine as a transport state. As a consequence of technical progress aviation technology is becoming more and more sophisticated and reliable. However, the intensity of the impact on a person caused by various adverse factors, including information overloads, is constantly increasing. Statistics show that up to 80% of accidents and disasters occur due to pilot errors. The reason for about 35 % of these errors is lack of professional training, and about 40% of the errors are caused by inexperience of the crew. Target setting. The cost of aircraft, crew training and the "price" of error increase simultaneously. Cost of professional training of helicopter crews on complex flight simulators is an order of magnitude lower than on real helicopters. Therefore, today the focus of increasing the safety of flights is to improve the level of flight training and flight experience via the use of flight simulators with a high level of information adequacy to a real helicopter. Actual scientific researches and issues analysis. In order to ensure the possibility of the trained crew to obtain the appropriate official documents stating their professional training level, the simulator must be certified according to national and international requirements, i.e. the adequacy of its handling qualities to the appropriate qualities of a simulated helicopter must be guaranteed. Uninvestigated parts of general matters defining. The equipment allows simulating the conduct of the helicopter in all flight modes, including critical ones: control failure, landing in the mode of main lift rotor autorotation, etc., developing practical recommendations for the flight crew, as well as to train the flight crew to find ways out of emergencies. Receiving information about the flight mode, the parameters of the onboard systems, the external environment, etc., the crew envision the information flight model. The information model of the simulator should be as similar as possible to the information model of the real helicopter. Consequently, the basic components of the simulator are the imitation systems providing the influence of the information creating the adequate picture of the flight on sense organs of the crew, including eyesight – a visualization system, flight control equipment, etc.; hearing – a system of aviation noise simulation; vestibular apparatus – a motion generation system; tactile channel – a system for loading control levers. The research objective. The listed systems form the informational model of the simulator, which should be coordinated with the movement of the helicopter. A mathematical model of the helicopter movement dynamics and the models of the mentioned systems provide this coordination. To provide the operation of the complex flight simulator, nonlinear mathematical models of helicopter dynamics based on the modified discrete vortex method have been developed. The models describe the flow of the volumetric design of the propeller apparatus and allow simulating a real-time flight in different modes, including "post-stall" condition. The statement of basic materials. The principles and approaches to the qualification evaluation of complex flight helicopter simulators in accordance with the requirements of the EU (CS-FSTD (H)) and IKAO (Doc 9625) are analyzed. The performance capabilities of a complex full-flight Mi-171 helicopter simulator created by SPA "AVIA" are described. The necessity of certification of flight simulators in compliance with international standards is substantiated. The analysis of the validation procedure is performed. The structure and functioning of the software complex designed to automate validation tests are described. Conclusions. An algorithm for obtaining a conclusion on the test result for one of the tests is presented.


2020 ◽  
Vol 65 (3) ◽  
pp. 1-15
Author(s):  
Umberto Saetti ◽  
Joseph F. Horn

The present study considers two notional rotorcraft models: a conventional utility helicopter, representative of an H-60, and a wing-only compound utility rotorcraft, representative of an H-60 with a wing similar to the X-49A wing. An explicit model following (EMF) control scheme is designed to achieve stability and desired rate command / attitude hold response around the roll, pitch, and yaw axes, while alleviating vibratory loads through both feed-forward and feedback compensation. The harmonic decomposition methodology is extended to enable optimization of primary flight control laws that mitigate vibratory loads. Specifically, linear time-periodic systems representative of the periodic rotorcraft dynamics are approximated by linear time-invariant (LTI) models. The LTI models are subsequently reduced and used in linear quadratic regulator (LQR) design to constrain the harmonics of the vibratory loads. Both fuselage state feedback and rotor state feedback are considered. A pseudo-inverse strategy is incorporated into the EMF scheme for redundant control allocation on the compound configuration. Simulations of the load alleviating controllers are compared to results from a baseline controller. Finally, an analysis is performed to assess the impact that load alleviating control action, rotor state feedback, and pseudo-inverse have on handling qualities in terms of ADS-33E specifications.


2020 ◽  
pp. 41-50
Author(s):  
Ph. S. Kartaev ◽  
I. D. Medvedev

The paper examines the impact of oil price shocks on inflation, as well as the impact of the choice of the monetary policy regime on the strength of this influence. We used dynamic models on panel data for the countries of the world for the period from 2000 to 2017. It is shown that mainly the impact of changes in oil prices on inflation is carried out through the channel of exchange rate. The paper demonstrates the influence of the transition to inflation targeting on the nature of the relationship between oil price shocks and inflation. This effect is asymmetrical: during periods of rising oil prices, inflation targeting reduces the effect of the transfer of oil prices, limiting negative effects of shock. During periods of decline in oil prices, this monetary policy regime, in contrast, contributes to a stronger transfer, helping to reduce inflation.


2021 ◽  
Vol 16 (4) ◽  
pp. 638-669
Author(s):  
Miriam Alzate ◽  
Marta Arce-Urriza ◽  
Javier Cebollada

When studying the impact of online reviews on product sales, previous scholars have usually assumed that every review for a product has the same probability of being viewed by consumers. However, decision-making and information processing theories underline that the accessibility of information plays a role in consumer decision-making. We incorporate the notion of review visibility to study the relationship between online reviews and product sales, which is proxied by sales rank information, studying three different cases: (1) when every online review is assumed to have the same probability of being viewed; (2) when we assume that consumers sort online reviews by the most helpful mechanism; and (3) when we assume that consumers sort online reviews by the most recent mechanism. Review non-textual and textual variables are analyzed. The empirical analysis is conducted using a panel of 119 cosmetic products over a period of nine weeks. Using the system generalized method of moments (system GMM) method for dynamic models of panel data, our findings reveal that review variables influence product sales, but the magnitude, and even the direction of the effect, vary amongst visibility cases. Overall, the characteristics of the most helpful reviews have a higher impact on sales.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4392
Author(s):  
Jia Zhou ◽  
Hany Abdel-Khalik ◽  
Paul Talbot ◽  
Cristian Rabiti

This manuscript develops a workflow, driven by data analytics algorithms, to support the optimization of the economic performance of an Integrated Energy System. The goal is to determine the optimum mix of capacities from a set of different energy producers (e.g., nuclear, gas, wind and solar). A stochastic-based optimizer is employed, based on Gaussian Process Modeling, which requires numerous samples for its training. Each sample represents a time series describing the demand, load, or other operational and economic profiles for various types of energy producers. These samples are synthetically generated using a reduced order modeling algorithm that reads a limited set of historical data, such as demand and load data from past years. Numerous data analysis methods are employed to construct the reduced order models, including, for example, the Auto Regressive Moving Average, Fourier series decomposition, and the peak detection algorithm. All these algorithms are designed to detrend the data and extract features that can be employed to generate synthetic time histories that preserve the statistical properties of the original limited historical data. The optimization cost function is based on an economic model that assesses the effective cost of energy based on two figures of merit: the specific cash flow stream for each energy producer and the total Net Present Value. An initial guess for the optimal capacities is obtained using the screening curve method. The results of the Gaussian Process model-based optimization are assessed using an exhaustive Monte Carlo search, with the results indicating reasonable optimization results. The workflow has been implemented inside the Idaho National Laboratory’s Risk Analysis and Virtual Environment (RAVEN) framework. The main contribution of this study addresses several challenges in the current optimization methods of the energy portfolios in IES: First, the feasibility of generating the synthetic time series of the periodic peak data; Second, the computational burden of the conventional stochastic optimization of the energy portfolio, associated with the need for repeated executions of system models; Third, the inadequacies of previous studies in terms of the comparisons of the impact of the economic parameters. The proposed workflow can provide a scientifically defendable strategy to support decision-making in the electricity market and to help energy distributors develop a better understanding of the performance of integrated energy systems.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tawfik Yahya ◽  
Nur Azah Hamzaid ◽  
Sadeeq Ali ◽  
Farahiyah Jasni ◽  
Hanie Nadia Shasmin

AbstractA transfemoral prosthesis is required to assist amputees to perform the activity of daily living (ADL). The passive prosthesis has some drawbacks such as utilization of high metabolic energy. In contrast, the active prosthesis consumes less metabolic energy and offers better performance. However, the recent active prosthesis uses surface electromyography as its sensory system which has weak signals with microvolt-level intensity and requires a lot of computation to extract features. This paper focuses on recognizing different phases of sitting and standing of a transfemoral amputee using in-socket piezoelectric-based sensors. 15 piezoelectric film sensors were embedded in the inner socket wall adjacent to the most active regions of the agonist and antagonist knee extensor and flexor muscles, i. e. region with the highest level of muscle contractions of the quadriceps and hamstring. A male transfemoral amputee wore the instrumented socket and was instructed to perform several sitting and standing phases using an armless chair. Data was collected from the 15 embedded sensors and went through signal conditioning circuits. The overlapping analysis window technique was used to segment the data using different window lengths. Fifteen time-domain and frequency-domain features were extracted and new feature sets were obtained based on the feature performance. Eight of the common pattern recognition multiclass classifiers were evaluated and compared. Regression analysis was used to investigate the impact of the number of features and the window lengths on the classifiers’ accuracies, and Analysis of Variance (ANOVA) was used to test significant differences in the classifiers’ performances. The classification accuracy was calculated using k-fold cross-validation method, and 20% of the data set was held out for testing the optimal classifier. The results showed that the feature set (FS-5) consisting of the root mean square (RMS) and the number of peaks (NP) achieved the highest classification accuracy in five classifiers. Support vector machine (SVM) with cubic kernel proved to be the optimal classifier, and it achieved a classification accuracy of 98.33 % using the test data set. Obtaining high classification accuracy using only two time-domain features would significantly reduce the processing time of controlling a prosthesis and eliminate substantial delay. The proposed in-socket sensors used to detect sit-to-stand and stand-to-sit movements could be further integrated with an active knee joint actuation system to produce powered assistance during energy-demanding activities such as sit-to-stand and stair climbing. In future, the system could also be used to accurately predict the intended movement based on their residual limb’s muscle and mechanical behaviour as detected by the in-socket sensory system.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Marwan Hassan ◽  
Achraf Hossen

This paper presents simulations of a loosely supported cantilever tube subjected to turbulence and fluidelastic instability forces. Several time domain fluid force models are presented to simulate the damping-controlled fluidelastic instability mechanism in tube arrays. These models include a negative damping model based on the Connors equation, fluid force coefficient-based models (Chen, 1983, “Instability Mechanisms and Stability Criteria of a Group of Cylinders Subjected to Cross-Flow. Part 1: Theory,” Trans. ASME, J. Vib., Acoust., Stress, Reliab. Des., 105, pp. 51–58; Tanaka and Takahara, 1981, “Fluid Elastic Vibration of Tube Array in Cross Flow,” J. Sound Vib., 77, pp. 19–37), and two semi-analytical models (Price and Païdoussis, 1984, “An Improved Mathematical Model for the Stability of Cylinder Rows Subjected to Cross-Flow,” J. Sound Vib., 97(4), pp. 615–640; Lever and Weaver, 1982, “A Theoretical Model for the Fluidelastic Instability in Heat Exchanger Tube Bundles,” ASME J. Pressure Vessel Technol., 104, pp. 104–147). Time domain modeling and implementation challenges for each of these theories were discussed. For each model, the flow velocity and the support clearance were varied. Special attention was paid to the tube/support interaction parameters that affect wear, such as impact forces and normal work rate. As the prediction of the linear threshold varies depending on the model utilized, the nonlinear response also differs. The investigated models exhibit similar response characteristics for the lift response. The greatest differences were seen in the prediction of the drag response, the impact force level, and the normal work rate. Simulation results show that the Connors-based model consistently underestimates the response and the tube/support interaction parameters for the loose support case.


2021 ◽  
Vol 37 (1_suppl) ◽  
pp. 1420-1439
Author(s):  
Albert R Kottke ◽  
Norman A Abrahamson ◽  
David M Boore ◽  
Yousef Bozorgnia ◽  
Christine A Goulet ◽  
...  

Traditional ground-motion models (GMMs) are used to compute pseudo-spectral acceleration (PSA) from future earthquakes and are generally developed by regression of PSA using a physics-based functional form. PSA is a relatively simple metric that correlates well with the response of several engineering systems and is a metric commonly used in engineering evaluations; however, characteristics of the PSA calculation make application of scaling factors dependent on the frequency content of the input motion, complicating the development and adaptability of GMMs. By comparison, Fourier amplitude spectrum (FAS) represents ground-motion amplitudes that are completely independent from the amplitudes at other frequencies, making them an attractive alternative for GMM development. Random vibration theory (RVT) predicts the peak response of motion in the time domain based on the FAS and a duration, and thus can be used to relate FAS to PSA. Using RVT to compute the expected peak response in the time domain for given FAS therefore presents a significant advantage that is gaining traction in the GMM field. This article provides recommended RVT procedures relevant to GMM development, which were developed for the Next Generation Attenuation (NGA)-East project. In addition, an orientation-independent FAS metric—called the effective amplitude spectrum (EAS)—is developed for use in conjunction with RVT to preserve the mean power of the corresponding two horizontal components considered in traditional PSA-based modeling (i.e., RotD50). The EAS uses a standardized smoothing approach to provide a practical representation of the FAS for ground-motion modeling, while minimizing the impact on the four RVT properties ( zeroth moment, [Formula: see text]; bandwidth parameter, [Formula: see text]; frequency of zero crossings, [Formula: see text]; and frequency of extrema, [Formula: see text]). Although the recommendations were originally developed for NGA-East, they and the methodology they are based on can be adapted to become portable to other GMM and engineering problems requiring the computation of PSA from FAS.


Sign in / Sign up

Export Citation Format

Share Document