scholarly journals Validation of Numerical Models of a Rotorcraft Crashworthy Seat and Subfloor

Aerospace ◽  
2020 ◽  
Vol 7 (12) ◽  
pp. 174
Author(s):  
Paolo Astori ◽  
Mauro Zanella ◽  
Matteo Bernardini

The present work explores some critical aspects of the numerical modeling of a rotorcraft seat and subfloor equipped with energy-absorbing stages, which are paramount in crash landing conditions. To limit the vast complexity of the problem, a purely vertical impact is considered as a reference scenario for an assembly made of a crashworthy helicopter seat and a subfloor section, including an anthropomorphic dummy. A preliminary lumped mass model is used to drive the design of the experimental drop test. Some additional static and dynamic tests are carried out at the coupon and sub-component levels to characterize the seat cushion, the seat pan and the honeycomb elements that were introduced in the structure as energy absorbers. The subfloor section is designed and manufactured with a simplified technique, yet representative of this structural component. Eventually, a finite element model representing the full drop test was created and, together with the original lumped mass model, finally validated against the experimental test, outlining the advantage of using both the numerical techniques for design assistance.

Author(s):  
Jens Nipkau ◽  
Arnold Ku¨hhorn ◽  
Bernd Beirow

Focussing on three basic blade modes the effect of the flow’s influence on the forced response of a mistuned HPC-blisk is studied using a surrogate lumped mass model called equivalent blisk model (EBM). Both measured and intentionally allowed mistuning is considered to find out in principle if the flow contributes to a slowdown of blade displacements with increasing mistuning. In a first step the mechanical properties of the EBM are adjusted to a finite element model and known mistuning distributions given in terms of blade frequencies and damping. Taking into account the flow structure interaction CFD-computations are carried out in order to derive aerodynamic influence coefficients (AIC) which are used to describe the aerodynamic forces coming along with the motion of each blade in the flow. These aerodynamic forces can be included directly in the EBM equations of motion or alternatively be used to calculate aeroelastic eigenvalues from which additional equivalent aerodynamic elements representing the co-vibrating air mass as well as aerodynamic stiffening and damping effects are derived. Both kinds of EBM are applied to study the forced response at least in a qualitative manner aiming to demonstrate some basic effects at low computing time.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yongming Yao ◽  
Ning Zhou ◽  
Guiming Mei ◽  
Weihua Zhang

Ice coating on overhead contact system (OCS) will affect the sliding of pantograph, and arc discharge phenomena will occur between pantograph and catenary, which will threaten the normal operation of train. This paper presents a comprehensive model to analyze the dynamics of icing on pantograph-catenary (PAC) system. The finite element model (FEM) is used for building the catenary, the pantograph is modeled as lumped-mass model, and the ice section of the cable is fan-shaped. The increased density method, uniform load method, and combinatorial material method of icing are used to analyze the icing problem of PAC system. The similarities and differences between the three simulation methods are compared. The influence of the ice thickness on the current collection quality between the pantograph and catenary at the different operating speeds calculated by the three methods is basically the same, which fully illustrates the effectiveness of the simulated ice coating method. In comparison, the combinatorial material method is a more reasonable method for calculating the icing of catenary systems. The research also shows that the influence of icing on the current collection quality of PAC system is different when the train runs at different speeds. Specifically, as the speed of trains increases, the effect of ice thickness on the current collection quality of the PAC system is becoming increasingly apparent.


2021 ◽  
Author(s):  
Brendon M. Nickerson ◽  
Anriëtte Bekker

Abstract Full-scale measurements were conducted on the port side propulsion shaft the S.A. Agulhas II during the 2019 SCALE Spring Cruise. The measurements included the shaft torque captured at two separate measurement locations, and the shaft rotational speed at one measurement location. The ice-induced propeller moments are estimated from the full-scale shaft responses using two inverse models. The first is a published discrete lumped mass model that relies on regularization due to the inverse problem being ill-posed. This model is only able to make use of the propulsion shaft torque as inputs. The second model is new and employs modal superposition to represent the propulsion shaft as a combination of continuous modes, resulting in a well-posed problem. This new model requires the additional measurement of the shaft rotational speed for the inverse solution. The continuous model is shown to be more consistent and efficient, which allows its use in real-time monitoring of propeller moments.


Author(s):  
Chao Liu ◽  
Dongxiang Jiang ◽  
Jingming Chen

Crack failures continually occur in shafts of turbine generator, where grid disturbance is an important cause. To estimate influences of grid disturbance, coupled torsional vibration and fatigue damage of turbine generator shafts are analyzed in this work, with a case study in a 600MW steam unit in China. The analysis is the following: (i) coupled system is established with generator model and finite element method (FEM)-based shafts model, where the grid disturbance is signified by fluctuation of generator outputs and the shafts model is formed with lumped mass model (LMM) and continuous mass model (CMM), respectively; (ii) fatigue damage is evaluated in the weak location of the shafts through local torque response computation, stress calculation, and fatigue accumulation; and (iii) failure-prevention approach is formed by solving the inverse problem in fatigue evaluation. The results indicate that the proposed scheme with continuous mass model can acquire more detailed and accurate local responses throughout the shafts compared with the scheme without coupled effects or the scheme using lumped mass model. Using the coupled torsional vibration scheme, fatigue damage caused by grid disturbance is evaluated and failure prevention rule is formed.


Author(s):  
Tatsuya Kaneko ◽  
Ryota Wada ◽  
Masahiko Ozaki ◽  
Tomoya Inoue

Offshore drilling with drill string over 10,000m long has many technical challenges. Among them, the challenge to control the weight on bit (WOB) between a certain range is inevitable for the integrity of drill pipes and the efficiency of the drilling operation. Since WOB cannot be monitored directly during drilling, the tension at the top of the drill string is used as an indicator of the WOB. However, WOB and the surface measured tension are known to show different features. The deviation among the two is due to the dynamic longitudinal behavior of the drill string, which becomes stronger as the drill string gets longer and more elastic. One feature of the difference is related to the occurrence of high-frequency oscillation. We have analyzed the longitudinal behavior of drill string with lumped-mass model and captured the descriptive behavior of such phenomena. However, such physics-based models are not sufficient for real-time operation. There are many unknown parameters that need to be tuned to fit the actual operating conditions. In addition, the huge and complex drilling system will have non-linear behavior, especially near the drilling annulus. These features will only be captured in the data obtained during operation. The proposed hybrid model is a combination of physics-based models and data-driven models. The basic idea is to utilize data-driven techniques to integrate the obtained data during operation into the physics-based model. There are many options on how far we integrate the data-driven techniques to the physics-based model. For example, we have been successful in estimating the WOB from the surface measured tension and the displacement of the drill string top with only recurrent neural networks (RNNs), provided we have enough data of WOB. Lack of WOB measurement cannot be avoided, so the amount of data needs to be increased by utilizing results from physics-based numerical models. The aim of the research is to find a good combination of the two models. In this paper, we will discuss several hybrid model configurations and its performance.


Author(s):  
Qiaobin Liu ◽  
Wenku Shi ◽  
Zhiyong Chen

The unbalanced excitation force and torque generated by an engine that resonate with the natural frequency of drivetrain often causes vibration and noise problems in vehicles. This study aims to comprehensively employ theoretical modelling and experimental identification methods to obtain the fluctuation coefficients of engine excitation torque when a car is in different gear positions. The inherent characteristics of the system are studied on the basis of the four-degree-of-freedom driveline lumped mass model and the longitudinal dynamics model of vehicle. The correctness of the model is verified by torsional vibration test. The second order's engine torque fluctuation coefficients are identified by firefly algorithm according to the curves of flywheel speed in different gears under the acceleration condition of the whole open throttle. The torque obtained by parameter identification is applied to the model, and the torsional vibration response of the system is analysed. The influence of the key parameters on the torsional vibration response of the system is investigated. The study concludes that proper reduction of clutch stiffness can increase clutch damping and half-axle rigidity, which can help improve the torsional vibration performance of the system. This study can provide reference for vehicle drivetrain modelling and torsional vibration control.


1999 ◽  
Vol 121 (2) ◽  
pp. 141-148 ◽  
Author(s):  
S. H. Choi ◽  
J. Glienicke ◽  
D. C. Han ◽  
K. Urlichs

In this paper we investigate the rotordynamics of a geared system with coupled lateral, torsional and axial vibrations, with a view toward understanding the severe vibration problems that occurred on a 28-MW turboset consisting of steam turbine, double helical gear and generator. The new dynamic model of the shaft line was based on the most accurate simulation of the static shaft lines, which are influenced by variable steam forces and load-dependent gear forces. The gear forces determine the static shaft position in the bearing shell. Each speed and load condition results in a new static bending line which defines the boundary condition for the dynamic vibration calculation of the coupled lateral, torsional and axial systems. Rigid disks and distributed springs were used for shaft line modeling. The tooth contact was modeled by distributed springs acting normally on the flank surfaces of both helices. A finite element method with distributed mass was used for lateral and torsional vibrations. It was coupled to a lumped mass model describing the axial vibrations. The forced vibrations due to unbalances and static transmission errors were calculated. The eigenvalue problem was solved by means of a stability analysis showing the special behavior of the coupled system examined. The calculation was successfully applied, and the source of the vibration problem could be located as being a gear-related transmission error. Several redesign proposals lead to a reliable and satisfactory vibrational behavior of the turboset.


Author(s):  
Mohammed F. Daqaq ◽  
Elihab M. Abdel-Rahman ◽  
Ali H. Nayfeh

The fast response of micromirrors and their ability to achieve large scanning angles and low wavelength sensitivity, has made them an appealing substitute for traditional scanning and display technologies. To achieve large rotation angles, while minimizing the voltage requirements, the microscanner is excited at its resonance frequency and then used to steer a light beam along a surface. In this work, we develop a comprehensive model of a torsional microscanner. Based on the eigenvalue problem, we reduce the model to a 2-DOF lumped-mass model that captures the significant dynamics of the microscanner. We use the method of multiple scales to derive an approximate analytical solution of the microscanner response to combined DC and resonant AC voltage excitation. We examined the characteristics of the solution and found that, for a range of DC voltage, a two-to-one internal resonance occurs between the first two modes. Therefore, the energy fed to the first (torsional) mode may be channeled to the second (bending) mode causing an undesirable steady-state response. This phenomenon results in significant degradation in the microscanner performance, therefore, the designer needs to identify it, design around it, or control it.


Author(s):  
S. Mohammad Hashemi ◽  
M. F. Golnaraghi

Abstract The active control of building vibration is addressed. The aeroelastic lumped mass model of a building is designed to be used as the test bed for the active control system. The five story lumped parameter model was modeled as a cantilever beam exhibiting planar vibration. A Linear Coupling Control (LCC) strategy was implemented to eliminate the vibrations. An active (moving) mass damper (AMD) was first designed and experimentally implemented to control the first mode vibration of the system. An alternative pendulum control system was then designed and implemented. The proposed pendulum, having three times smaller mass than the AMD, was found to be more effective in reducing the building vibrations.


1998 ◽  
Vol 26 ◽  
pp. 265-271 ◽  
Author(s):  
Fridtjov Irgens ◽  
Bonsak Schieldrop ◽  
Carl B. Harbitz ◽  
Ulrik Domaas ◽  
Runar Opsahl

Two models simulating snow avalanches impacting retaining dams at oblique angles of incidence are presented.First, a lumped-mass model applying the Voellmy-Perla equation is used to calculate the path of the centre-of-mass along the side of a retaining dam.Secondly, a one-dimensional continuum model, applying depth-integrated equations of balance of mass and linear momentum, is expanded to take into account that real avalanche flows are three-dimensional. The centre-line of the avalanche path is determined by the flowing material as it progresses down the channelized avalanche path. The nonlinear constitutive equations comprise viscosity, visco-elasticity and plasticity.Both models are calibrated by simulations of a registered avalanche following a strongly curved channel. The path and the run-up height of the avalanche on the natural deflecting dam with oblique angle of incidence as calculated by the two models, are compared with the observations made.


Sign in / Sign up

Export Citation Format

Share Document