scholarly journals Review of State-of-the-Art Green Monopropellants: For Propulsion Systems Analysts and Designers

Aerospace ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 20
Author(s):  
Ahmed E. S. Nosseir ◽  
Angelo Cervone ◽  
Angelo Pasini

Current research trends have advanced the use of “green propellants” on a wide scale for spacecraft in various space missions; mainly for environmental sustainability and safety concerns. Small satellites, particularly micro and nanosatellites, evolved from passive planetary-orbiting to being able to perform active orbital operations that may require high-thrust impulsive capabilities. Thus, onboard primary and auxiliary propulsion systems capable of performing such orbital operations are required. Novelty in primary propulsion systems design calls for specific attention to miniaturization, which can be achieved, along the above-mentioned orbital transfer capabilities, by utilizing green monopropellants due to their relative high performance together with simplicity, and better storability when compared to gaseous and bi-propellants, especially for miniaturized systems. Owing to the ongoing rapid research activities in the green-propulsion field, it was necessary to extensively study and collect various data of green monopropellants properties and performance that would further assist analysts and designers in the research and development of liquid propulsion systems. This review traces the history and origins of green monopropellants and after intensive study of physicochemical properties of such propellants it was possible to classify green monopropellants to three main classes: Energetic Ionic Liquids (EILs), Liquid NOx Monopropellants, and Hydrogen Peroxide Aqueous Solutions (HPAS). Further, the tabulated data and performance comparisons will provide substantial assistance in using analysis tools—such as: Rocket Propulsion Analysis (RPA) and NASA CEA—for engineers and scientists dealing with chemical propulsion systems analysis and design. Some applications of green monopropellants were discussed through different propulsion systems configurations such as: multi-mode, dual mode, and combined chemical–electric propulsion. Although the in-space demonstrated EILs (i.e., AF-M315E and LMP-103S) are widely proposed and utilized in many space applications, the investigation transpired that NOx fuel blends possess the highest performance, while HPAS yield the lowest performance even compared to hydrazine.

2018 ◽  
Vol 28 (4) ◽  
pp. 1-5 ◽  
Author(s):  
Charalampos D. Manolopoulos ◽  
Matteo F. Iacchetti ◽  
Alexander C. Smith ◽  
Kevin Berger ◽  
Mark Husband ◽  
...  

2017 ◽  
Vol 9 (1) ◽  
pp. 15-25 ◽  
Author(s):  
Mark Voskuijl ◽  
Joris van Bogaert ◽  
Arvind G. Rao

Abstract The potential environmental benefits of hybrid electric regional turboprop aircraft in terms of fuel consumption are investigated. Lithium–air batteries are used as energy source in combination with conventional fuel. A validated design and analysis framework is extended with sizing and analysis modules for hybrid electric propulsion system components. In addition, a modified Bréguet range equation, suitable for hybrid electric aircraft, is introduced. The results quantify the limits in range and performance for this type of aircraft as a function of battery technology level. A typical design for 70 passengers with a design range of 1528 km, based on batteries with a specific energy of 1000 Wh/kg, providing 34% of the shaft power throughout the mission, yields a reduction in emissions by 28%.


Aerospace ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 169
Author(s):  
Ahmed E. S. Nosseir ◽  
Angelo Cervone ◽  
Angelo Pasini

Green propellants are currently considered as enabling technology that is revolutionizing the development of high-performance space propulsion, especially for small-sized spacecraft. Modern space missions, either in LEO or interplanetary, require relatively high-thrust and impulsive capabilities to provide better control on the spacecraft, and to overcome the growing challenges, particularly related to overcrowded LEOs, and to modern space application orbital maneuver requirements. Green monopropellants are gaining momentum in the design and development of small and modular liquid propulsion systems, especially for CubeSats, due to their favorable thermophysical properties and relatively high performance when compared to gaseous propellants, and perhaps simpler management when compared to bipropellants. Accordingly, a novel high-thrust modular impulsive green monopropellant propulsion system with a micro electric pump feed cycle is proposed. MIMPS-G500mN is designed to be capable of delivering 0.5 N thrust and offers theoretical total impulse Itot from 850 to 1350 N s per 1U and >3000 N s per 2U depending on the burnt monopropellant, which makes it a candidate for various LEO satellites as well as future Moon missions. Green monopropellant ASCENT (formerly AF-M315E), as well as HAN and ADN-based alternatives (i.e., HNP225 and LMP-103S) were proposed in the preliminary design and system analysis. The article will present state-of-the-art green monopropellants in the (EIL) Energetic Ionic Liquid class and a trade-off study for proposed propellants. System analysis and design of MIMPS-G500mN will be discussed in detail, and the article will conclude with a market survey on small satellites green monopropellant propulsion systems and commercial off-the-shelf thrusters.


2019 ◽  
Vol 18 (6) ◽  
pp. 461-470 ◽  
Author(s):  
M. Hirz ◽  
M. Hofstetter ◽  
D. Lechleitner

Electric drive systems consisting of battery, inverter, electric motor and gearbox are applied in hybridor purely electric vehicles. The layout process of such propulsion systems is performed on system level under consideration of various component properties and their interfering characteristics. In addition, different boundary conditions are taken under account, e. g. performance, efficiency, packaging, costs. In this way, the development process of the power train involves a broad range of influencing parameters and periphery conditions and thus represents a multi-dimensional optimization problem. Stateof-the-art development processes of mechatronic systems are usually executed according to the V-model, which represents a fundamental basis for handling the complex interactions of the different disciplines involved. In addition, stage-gate processes and spiral models are applied to deal with the high level of complexity during conception, design and testing. Involving a large number of technical and economic factors, these sequential, recursive processes may lead to suboptimal solutions since the system design processes do not sufficiently consider the complex relations between the different, partially conflicting domains. In this context, the present publication introduces an integrated multi-objective optimization strategy for the effective conception of electric propulsion systems, which involves a holistic consideration of all components and requirements in a multi-objective manner. The system design synthesis is based on component-specific Pareto-optimal designs to handle performance, efficiency, package and costs for given system requirements. The results are displayed as Pareto-fronts of electric power train system designs variants, from which decision makers are able to choose the best suitable solution. In this way, the presented system design approach for the development of electrically driven axles enables a multi-objective optimization considering efficiency, performance, costs and package. It is capable to reduce development time and to improve overall system quality at the same time.


1972 ◽  
Vol 94 (4) ◽  
pp. 294-302
Author(s):  
P. W. Curwen ◽  
W. E. Young ◽  
R. G. Furgurson

High temperatures and rotative speeds of future U. S. Army aircraft propulsion systems will impose increasingly severe operating requirements on oil-lubricated engine bearings and associated seals. Accordingly, air-lubricated bearings are being investigated as a possible approach to alleviating the lubrication problems. This paper presents the results of design and performance studies, as well as bearing component tests, relative to applying air bearings to a two-shaft, 3.5-lb/sec turboshaft engine. The test results verify that air bearings can carry the maximum loads imposed by flight and landing conditions, and can survive the sliding contacts associated with 15,000 engine start/stop cycles. Incentives for pursuing the air-bearing approach are identified, as are also the development and problem areas.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 75
Author(s):  
Erik Nyberg ◽  
Dídac Llopart i Cervelló ◽  
Ichiro Minami

Liquid lubricants are critical to enable long-life operation of high-performance machinery, such as geared actuators employed in robotics. In space applications, actuator gearboxes must operate in low temperatures, where liquid lubricants face inherent problems related to low temperature rheology. Heaters are relied upon to provide acceptable gearbox temperatures. Unfortunately, heating is energy-intense and does not scale well with increasing mechanism mass and performance. Effective boundary lubrication (BL), on the other hand, can minimize problems of low temperature rheology. BL relies on tribofilm formation over conventional fluid film separation. Effective space grade boundary lubricants can potentially allow for drastically reduced amounts of oil and the accompanying rheological problems. In this work, we describe the design of a methodology to evaluate and analyze tribology of actuator gearboxes operated under cryogenic oil-starved conditions in N2 atmosphere. The devised methodology enables research pertinent to space actuator tribology by accelerated testing and advanced analysis, as demonstrated by a lubricant candidate case study. Complementary microscopy techniques are discussed, and a novel methodology devised for gear internal microstructure analysis by X-ray microtomography (XMT) is presented.


Author(s):  
Andrea Giglio ◽  
Ingrid Paoletti ◽  
Giovanni Maria Conti

AbstractThree-dimensional (3D) textiles prove characteristics in structures and performance which can be as attractive as to be the main object of a high number of research and applications in specialist markets (from small medical devices to large engineering structure) where the performance demands are severe ([1] in J Eng Fibers Fabr.). Nevertheless, much of the research has come from academia and there are few relatively small companies that, even if have expertise, lack the resources to develop R&D programmes. This prevents to broaden their application and to consolidate their use in new markets ([2] in Advances in 3D Textiles, pp 1-18). The paper aims at exploring the potentialities and future implementations of 3D textiles in architecture and fashion design. Both are fields where the demand to balance requirements of environmental sustainability, low time-consuming production and high performance is emerging, in their own respective scale. A set of more than 10 real case studies are collected and analysed with the aim at underlining the potentialities and the limits of 3D textiles in practice. The overview suggests that a more integrated workflow among modelling and simulation tools and bigger effort from industry to enhance manufacturing options and increase the interest on new material systems, bring about new application such as indoor environmental quality (IEQ) or human body protection.


2000 ◽  
Vol 621 ◽  
Author(s):  
Colleen M. Marrese ◽  
James E. Polk ◽  
Juergen Mueller

ABSTRACTReplacing hollow and filament cathodes with field emitter (FE) cathodes could significantly improve the scalability, power, and performance of some meso- and microscale Electric Propulsion (EP) systems. The propulsion system environments and requirements and the challenges in integrating these technologies are discussed to justify the recommended cathode configurations. Required cathode technologies include low work function coatings on Si or Mo Field Emitter Array (FEA) cathodes with arc protection and electrostatic ion filters.


Author(s):  
Graziela Fernanda de Souza Maia ◽  
Marcelo Lopes de Oliveira e Souza ◽  
Alírio Cavalcanti de Brito

One of the processes that determine the reliability of solar panels used in space applications is the welding of interconnections between two adjacent solar cells. This process has various technologies, sequences and activities that have various characteristics, factors and parameters. Their combinations and values allow countless possibilities, making their adjustments time consuming, costly and exhausting. One way of abbreviating this, achieving competitiveness and meeting the needs of stakeholders is through the Analysis and Design of Experiments. This technique helps in optimizing the best adjustments to obtain the expected results. Thus, this paper presents a preliminary analysis of the parameters and their interactions of the welding process (by parallel-gap resistance welding) of interconnections between solar cells using design of experiments. In this welding process, the cell undergoes a certain level of degradation. For this reason, it is important to determine which process parameters are important and their proper levels, without big cell degradation. The result of this analysis can be used in the future to optimize the welding process meeting the design requirements for reliability and performance.


2021 ◽  
Vol 312 ◽  
pp. 11005
Author(s):  
Alberto Amerini ◽  
Leonardo Langone ◽  
Riccardo Vadi ◽  
Antonio Andreini

The increase in air traffic expected in the next years must be accompanied by innovation to ensure the lowest possible environmental impact. Hybrid electric-thermal propulsion systems are currently being investigated and could represent a breakthrough for environmental sustainability in the sector. However, the transition to electric propulsion remains challenging due to the current level of energy density related to storage systems, the additional components associated with power conversion and control systems, not to mention the cost of all the associated equipment. The purpose of this study is to carry out a preliminary assessment of a hybrid propulsion system for a short-mid range aircraft. This study investigates the series hybrid configuration, where a turboshaft, a high temperature superconducting (HTS) electric motor, batteries and power converters interact to provide the necessary propulsion for flight. A zero-dimensional procedure is developed to estimate the mass and efficiency of the powertrain components for a selected flight mission. Thermal engines are modeled with the low-order code and coupled with the components of the electric system through a python routine. A comparison in terms of weight and emissions is reported for the designed hybrid propulsion system and the conventional one. The analysis shows that the weight of the two propulsion systems is similar but, the presence of batteries, even considering a higher level of technology than the current one, leads to a significant increase in the weight of the hybrid aircraft. The second part of the study focuses on pollutant emissions, showing that the hybrid system can reduce CO2 emissions by 58% and NOx emissions by 68% compared to the conventional system. Despite the excellent premise, the reduction in payload for the hybrid aircraft causes a reduction in pollutant emissions per passenger only for NOx. For this reason, further technological improvement is needed to make hybrid propulsion advantageous in terms of both payload and pollutant emissions.


Sign in / Sign up

Export Citation Format

Share Document