scholarly journals Optimal Geno-Fuzzy Lateral Control of Powered Parachute Flying Vehicles

Aerospace ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 400
Author(s):  
Hanafy M. Omar

In this work, we propose a systematic procedure to design a fuzzy logic controller (FLC) to control the lateral motion of powered parachute (PPC) flying vehicles. The design process does not require knowing the details of vehicle dynamics. Moreover, the physical constraints of the system, such as the maximum error of the yaw angle and the maximum allowed steering angle, are naturally included in the designed controller. The effectiveness of the proposed controller was assessed using the nonlinear six degrees of freedom (6DOF) mathematical model of the PPC. The genetic algorithm (GA) optimization technique was used to optimize the distribution of the fuzzy membership functions in order to improve the performance of the suggested controller. The robustness of the proposed controller was evaluated by changing the values of the parafoil aerodynamic coefficients and the initial flight conditions.

2014 ◽  
Vol 624 ◽  
pp. 289-292
Author(s):  
Ting Jin ◽  
Yun Qiu Gong ◽  
Chun Yu Wei

The six degrees of freedom platform in vehicle driving simiulator simulates vehicle motion based on the calculation results of the dynamics model, so good dynamics model is the basis and prerequisite of simulator’s good performance. This paper describes the process of applying the Vortex software to establish vehicle dynamics model and focuses on the problem of damping matching in the vehicle suspension system based on the ride comfort and stability.


Author(s):  
T. Binazadeh ◽  
M. J. Yazdanpanah ◽  
M. H. Shafiei

The first step in designing a control system for a rigid body is to understand its dynamics. Underwater vehicle dynamics may be complex and difficult to model, mainly due to difficulties in observing and measuring actual underwater vehicle hydrodynamics response. This paper is concerned with structure selection of nonlinear polynomials in a Volterra polynomial basis function neural network and recursive parameter estimation of the selected model, in order to obtain a model of a variable mass underwater vehicle with six degrees of freedom using an input-output data set. The simulation results reveal the efficiency of the approach.


2019 ◽  
Vol 16 (01) ◽  
pp. 1950005
Author(s):  
Donghyuk Lee ◽  
Jangmyung Lee

A new hybrid joystick has been developed to share the six degrees of freedom (DOF) by three DOF inputs and three DOF feedback signals. For remotely controlling a mobile robot, steering and acceleration commands can be generated by a 3-DOF joystick using [Formula: see text], [Formula: see text], and [Formula: see text] directional motions, respectively. Usually, a remote operator cannot clearly watch dynamically changing terrain conditions; therefore, it is necessary to feedback the slope and tilt conditions of the road to the operator through the joystick. These values can be obtained based on the inertial navigation system (INS) and feedback to the joystick as kind of reflection forces. Further, a yaw angle has been used to feedback the actual direction of the robot through a steering control. The mechanism and control systems of the hybrid joystick are newly designed, and the effectiveness of this hybrid joystick has been verified through actual remote operation of a mobile robot driving on slanted and tilted terrain.


1993 ◽  
Vol 2 (4) ◽  
pp. 314-343 ◽  
Author(s):  
Ted Morris ◽  
Max Donath

One approach to tracking anatomical and robot joint motion consists of tracking the XYZ locations of multiple point targets that are attached to each of the moving segments and then computing the three translations and three orientation angles between adjoining segments. The complexity of such systems requires that we introduce a new conservative maximum error statistic to be used for evaluating the accuracy of 3D motion tracking systems. This paper addresses the various phenomena that contribute to measurement error when computing six degrees of freedom associated with the relative motion between the adjacent segments. The characteristics of these errors, common to many 3D motion tracking systems, were first determined by experimentation using one such system (MnSCAN). These and additional artifacts were then modeled in order to quantitatively evaluate their effects using the maximum error statistic. Based on these computer experiments, several relationships were identified that predict how each of these phenomena influences the predicted measurement of relative motion between bodies. These suggest where design emphasis should be placed in order to minimize the error in tracking the six degrees of freedom. The methodology and the conclusions based on these results can be applied to designing most six degree of freedom position and motion measurement systems.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Sen-Yung Lee ◽  
Yung-Chang Cheng

A new dynamic model of railway vehicle moving on curved tracks is proposed. In the new model, the motion of the car body is considered and the motion of the truck frame is not restricted by a virtual boundary. Based on the heuristic nonlinear creep model, the nonlinear coupled differential equations of the motion of an eight degrees of freedom car system—considering the lateral displacement and the yaw angle of each wheelset, the truck frame, and the half car body—moving on curved tracks are derived completely. To illustrate the accuracy of the analysis, the limiting cases are examined. It is shown that the influence of the gyroscopic moment of the wheelsets on the critical hunting speed is negligible. In addition, the influences of the suspension parameters, including those losing in the six degrees of freedom system, on the critical hunting speeds evaluated via the linear and the nonlinear creep models are studied and compared.


Author(s):  
Peter Benjamin

A hierarchical model of a helicopter pilot is developed and mechanized by means of computer simulation. The basic element of the pilot model is a decision hierarchy which determines the multiloop closure and tracking characteristics of the man-vehicle system. Pilot model input is quantized and used by the hierarchy to determine the specific loop to be closed and the particular transfer function to apply to that loop. The pilot model and vehicle dynamics are implemented on a digital computer. Model validation is provided by comparison of tracking records obtained from this simulation of the vehicle with a human operator. Although developed for a vehicle with only the two lateral degrees of freedom, the pilot model is sufficiently general in form to allow its extension to six degrees of freedom. As a fourth-order system, it is applicable to the control of not only the helicopter, but all VTOL vehicles. The reduction of higher-order inputs to zero permits applicability to vehicles with lower-order dynamics. Its form is independent of the input function.


Author(s):  
Takuji Nakashima ◽  
Makoto Tsubokura ◽  
Syumei Matsuda ◽  
Yasuaki Doi

A one-way coupled analysis was used to investigate both the unsteady aerodynamic forces on a simplified heavy-duty truck in strong wind gusts and their effects on its motion. The vehicle model for the dynamics simulation was extended to six degrees of freedom (6DoF). First, a transitional aerodynamics simulation was conducted for the simplified truck with a fixed vehicle attitude but subject to a sudden crosswind. Based on the visualized results of this aerodynamics simulation, flow phenomena generating transitional aerodynamic forces and moments are discussed, especially those acting in the vertical direction. While the truck was running into the crosswind region, the growth and breakdown of a large-scale vortex above the container generated a transitional behavior of aerodynamic lift and pitching moment. Next, time series of the six components of the aerodynamic forces and moments were input into the vehicle dynamics simulation. By comparing the results with those of a quasi-steady aerodynamics simulation, the effect of transitional aerodynamics on vertical motions was clarified, with the largest difference found in a rolling motion. Moreover, the effect of considering 6DoF was investigated by also conducting the vehicle dynamics simulation with 3DoF. The consideration of dynamics in the vertical direction changed the estimation of tire forces, which were related to a vertical load on the tire. Finally, the effects of considering 6DoF were also identified for horizontal motions.


2020 ◽  
pp. 67-73
Author(s):  
N.D. YUsubov ◽  
G.M. Abbasova

The accuracy of two-tool machining on automatic lathes is analyzed. Full-factor models of distortions and scattering fields of the performed dimensions, taking into account the flexibility of the technological system on six degrees of freedom, i. e. angular displacements in the technological system, were used in the research. Possibilities of design and control of two-tool adjustment are considered. Keywords turning processing, cutting mode, two-tool setup, full-factor model, accuracy, angular displacement, control, calculation [email protected]


Sign in / Sign up

Export Citation Format

Share Document