scholarly journals Gliricidia Agroforestry Technology Adoption Potential in Selected Dryland Areas of Dodoma Region, Tanzania

Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 306
Author(s):  
Martha Swamila ◽  
Damas Philip ◽  
Adam Meshack Akyoo ◽  
Stefan Sieber ◽  
Mateete Bekunda ◽  
...  

Declining soil fertility is one of the major problems facing producers of field crops in most dryland areas of Sub-Saharan Africa. In response to the declining soil fertility, extensive participatory research has been undertaken by the World Agroforestry (ICRAF) and smallholder farmers in Dodoma region, Tanzania. The research has, amongst others, led to the development of Gliricidia agroforestry technology. The positive impact of Gliricidia intercropping on crop yields has been established. However, information on farmers’ willingness and ability to adopt the Gliricidia agroforestry technology on their farms is limited. This study predicts the adoption of Gliricidia agroforestry and conventional mineral fertilizer use technology. Focus Group Discussions (FGDs) were conducted with groups of farmers, purposively selected based on five sets of criteria: (i) at least 2 years of experience in either trying or using Gliricidia agroforestry technology, (ii) at least 1 year of experience in either trying or using the mineral fertilizer technology (iii) at least 10 years of living in the study villages, (iv) the age of 18 years and above, and (v) sex. The Adoption and Diffusion Outcome Prediction Tool (ADOPT) was used to predict the peak adoption levels and the respective time in years. A sensitivity analysis was conducted to assess the effect of change in adoption variables on predicted peak adoption levels and time to peak adoption. The results revealed variations in peak adoption levels with Gliricidia agroforestry technology exhibiting the highest peak of 67.6% in 12 years, and that the most influential variable to the peak adoption is the upfront cost of investing in Gliricidia agroforestry and fertilizer technologies. However, in Gliricidia agroforestry technology most production costs are incurred in the first year of project establishment but impact the long term biophysical and economic benefits. Moreover, farmers practicing agroforestry technology accrue environmental benefits, such as soil erosion control. Based on the results, it is plausible to argue that Gliricidia agroforestry technology has a high adoption potential and its adoption is influenced by investment costs. We recommend two actions to attract smallholder farmers investing in agroforestry technologies. First, enhancing farmers’ access to inputs at affordable prices. Second, raising farmers’ awareness of the long-term environmental benefits of Gliricidia agroforestry technology.

2015 ◽  
Vol 52 (2) ◽  
pp. 165-187 ◽  
Author(s):  
TESFAY ARAYA ◽  
JAN NYSSEN ◽  
BRAM GOVAERTS ◽  
FRÉDÉRIC BAUDRON ◽  
LOUISE CARPENTIER ◽  
...  

SUMMARYLong-term in situ soil and water conservation experiments are rare in sub-Saharan Africa, particularly in Eastern Africa. A long-term experiment was conducted (2005–2013) on a Vertisol to quantify the impacts of resource-conserving agriculture (RCA) on runoff, soil loss, soil fertility and crop productivity and economic profitability in northern Ethiopia. Two RCA practices were developed from traditional furrow tillage practices: (i) derdero+ (DER+) and terwah+ (TER+). DER+ is a furrow and permanent raised bed planting system, tilled once at planting time by refreshing the furrow and 30% of crop residue is retained. TER+ is ploughed once at planting, furrows are made at 1.5 m intervals and 30% crop residue is retained. The third treatment was a conventional tillage (CT) with a minimum of three tillage operations and complete removal of crop residues. Wheat, teff, barley and grass pea crops were grown in rotation. Runoff, and soil and nutrient loss were measured in plastic sheet-lined collector trenches. Significantly different (P < 0.05) runoff coefficients (%) and soil losses (t ha−1) averaged over 9 yrs were 14 and 3, 22 and 11 and 30 and 17 for DER+, TER+ and CT, respectively. Significant improvements in crop yield and gross margin were observed after a period of three years of cropping This study demonstrated that RCA systems in semi-arid agro-ecosystems constitute a field rainwater conservation and soil fertility improvement strategy that enhances crop productivity and economic profitability. Adoption of RCA systems (DER+ and TER+) in the study area requires further work to improve smallholder farmers’ awareness on benefits, to guarantee high standards during implementation and to design appropriate weed management strategies.


2017 ◽  
Vol 5 (1) ◽  
pp. 42-50
Author(s):  
Nabin Rawal ◽  
Rajan Ghimire ◽  
Devraj Chalise

Balanced nutrient supply is important for the sustainable crop production. We evaluated the effects of nutrient management practices on soil properties and crop yields in rice (Oryza sativa L.) - rice - wheat (Triticum aestivum L.) system in a long-term experiment established at National Wheat Research Program (NWRP), Bhairahawa, Nepal. The experiment was designed as a randomized complete block experiment with nine treatments and three replications. Treatments were applied as: T1- no nutrients added, T2- N added; T3- N and P added; T4- N and K added; T5- NPK added at recommended rate for all crops. Similarly, T6- only N added in rice and NPK in wheat at recommended rate; T7- half N; T8- half NP of recommended rate for both crops; and T9- farmyard manure (FYM) @10 Mg ha-1 for all crops in rotation. Results of the study revealed that rice and wheat yields were significantly greater under FYM than all other treatments. Treatments that did not receive P (T2, T3, T7, T8) and K (T2, T4) had considerably low wheat yield than treatments that received NPK (T5) and FYM (T9). The FYM lowered soil pH and improved soil organic matter (SOM), total nitrogen (TN), available phosphorus (P), and exchangeable potassium (K) contents than other treatments. Management practices that ensure nutrient supply can increase crop yield and improve soil fertility status.Int. J. Appl. Sci. Biotechnol. Vol 5(1): 42-50


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1329
Author(s):  
Fan Fan ◽  
Hongyan Zhang ◽  
Gabriela Alandia ◽  
Laichao Luo ◽  
Zhenling Cui ◽  
...  

Overuse of mineral fertilizer has become common at the North China Plain. Simultaneously, more organic manure resources are available for smallholder farmers. In order to increase the use of organic manure and reduce mineral fertilizer applications, a 10-year fertilization experiment with maize took place between 2008 and 2017. We assessed the long-term effects of cattle manure (CM) application and a complete nutrient substitution with mineral fertilizer (MF) at four application levels (3, 6, 9 and 12 t ha−1 CM) on yield, macronutrients (N, P and K) use efficiencies and soil conditions. Results showed that maize yields from CM and MF treatments differed across time and were significantly different in the first year of the experiment to no significant differences with increasing experimental time. In addition, increased MF levels did not result in increased maize yields; this response was different with CM applications. The highest 10-year maize average yield was 7.7 t ha−1 obtained with 9 t ha−1 of CM. Our results also showed that at the lowest application level (3 t ha−1 CM), the partial factor productivity (PFP) and the agronomic efficiency (AE) of all macronutrients were significantly higher with MF than with CM applications. Nevertheless, these differences narrowed with increased fertilizer input levels. The MF and CM recovery efficiency (RE) of N, P and K performed differently. Generally, MF exhibited significantly higher N-RE than CM treatments. CM treatments had significantly higher P-RE, but no K-RE differences were found between CM and MF. Soil available N, P and K significantly increased when fertilizer levels raised. MF treatments exhibited similar levels of soil available N, but lower soil available P and K compared with CM treatments.


Author(s):  
Bunbom Edward Daadi ◽  
Uwe Latacz-Lohmann

Abstract An understanding of the nexus of organic fertilizer use decisions that smallholder farmers take is essential to designing relevant policy to support adoption in sub-Saharan Africa. In this paper, we applied exploratory factor analysis (EFA) on observed farmer decisions to identify a set of common management approaches that farmers in the northeastern part of Ghana adopt in using organic fertilizer. After identification, seemingly unrelated regression (SUR) analysis was applied to relate each approach to farmer characteristics that influence uptake decisions. The EFA identified four approaches, labeled as Augmentary Compost Use Approach, Urban Human Waste Organic Fertilizer Approach, Integrated Livestock Manure Approach and Mineral Fertilizer Cost Constraint Organic Approach. Each of the first three approaches involves a set of strategic farmer decisions which could be supported to increase organic fertilizer use. The SUR analysis showed that the uptake of each approach is affected by different subsets of farmer characteristics. However, participation in organic fertilizer management training positively influences the adoption of all four approaches. Thus, we recommend free training of smallholder farmers as a core element of any policy package to support organic fertilizer adoption.


2014 ◽  
Vol 51 (1) ◽  
pp. 17-41 ◽  
Author(s):  
H. NEZOMBA ◽  
F. MTAMBANENGWE ◽  
R. CHIKOWO ◽  
P. MAPFUMO

SUMMARYResearch has proved that integrated soil fertility management (ISFM) can increase crop yields at the field and farm scales. However, its uptake by smallholder farmers in Africa is often constrained by lack of technical guidelines on effective starting points and how the different ISFM options can be combined to increase crop productivity on a sustainable basis. A 4-year study was conducted on sandy soils (<10% clay) on smallholder farms in eastern Zimbabwe to assess how sequencing of different ISFM options may lead to incremental gains in soil productivity, enhanced efficiency of resource use, and increase crop yields at field scale. The sequences were primarily based on low-quality organic resources, nitrogen-fixing green manure and grain legumes, and mineral fertilizers. To enable comparison of legume and maize grain yields among treatments, yields were converted to energy (kilocalories) and protein (kg) equivalents. In the first year, ‘Manure-start’, a cattle manure-based sequence, yielded 3.4 t ha−1of maize grain compared with 2.5 and 0.4 t ha−1under a woodland litter-based sequence (‘Litter-start’) and continuous unfertilized maize control, respectively. The ‘Manure-start’ produced 12 × 106kilocalories (kcal); significantly (p< 0.05) out-yielding ‘Litter start’ and a fertilizer-based sequence (‘Fertilizer-start’) by 50%. A soyabean-based sequence, ‘Soya-start’, gave the highest protein production of 720 kg against <450 kg for the other sequencing treatments. In the second year, the sequences yielded an average of 5.7 t ha−1of maize grain, producing over 19 × 106kcal and 400 kg of protein. Consequently, the sequences significantly out-performed farmers’ designated poor fields by ~ fivefold. In the third year, ‘Soya-start’ gave the highest maize grain yield of 3.7 t ha−1; translating to 1.5 and 3 times more calories than under farmers’ designated rich and poor fields, respectively. In the fourth year, ‘Fertilizer-start’ produced the highest calories and protein of 14 × 106kcal and 340 kg, respectively. Cumulatively over 4 years, ‘Manure-start’ and ‘Soya-start’ gave the highest calories and protein, out-performing farmers’ designated rich and poor fields. Sunnhemp (Crotalaria junceaL.)-based sequences, ‘Green-start’ and ‘Fertilizer-start’, recorded the highest gains in plant available soil P of ~ 4 mg kg−1over the 4-year period. Assessment of P agronomic efficiencies showed significantly more benefits under the ISFM-based sequences than under farmers’ designated rich and poor fields. Based on costs of seed, nutrients and labour, ‘Soya-start’ gave the best net present value over the 4 years, while ‘Fertilizer-start’ was financially the least attractive. Overall, the ISFM-based sequences were more profitable than fields designated as rich and poor by farmers. We concluded that ISFM-based sequences can provide options for farm-level intensification by different categories of smallholder farmers in Southern Africa.


2009 ◽  
Vol 45 (1) ◽  
pp. 61-75 ◽  
Author(s):  
JAYNE MUGWE ◽  
DANIEL MUGENDI ◽  
MONICAH MUCHERU-MUNA ◽  
ROEL MERCKX ◽  
JONAS CHIANU ◽  
...  

SUMMARYDeclining soil fertility is a major cause of low per capita food production on smallholder farms of sub-Saharan Africa. This study attempted to provide an empirical explanation of the factors associated with farmers' decisions to adopt or not to adopt newly introduced integrated soil fertility management (ISFM) technologies consisting of combinations of organics and mineral fertilizer in Meru South district of the central highlands of Kenya. Out of 106 households interviewed, 46% were ‘adopters’ while 54% were ‘non-adopters’. A logistic regression model showed that the factors that significantly influenced adoption positively were farm management, ability to hire labour and months in a year households bought food for their families, while age of household head and number of mature cattle negatively influenced adoption. The implication of these results is that the adoption of ISFM practices could be enhanced through targeting of younger families where both spouses work on the farm full-time and food insecure households. It is also important to target farmers that lack access to other sources of soil fertility improvement. Examples include farmers that do not own cattle or those owning few and who, therefore, have limited access to animal manure.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253412
Author(s):  
Segla Roch Cedrique Zossou ◽  
Patrice Ygue Adegbola ◽  
Brice Tiburce Oussou ◽  
Gustave Dagbenonbakin ◽  
Roch Mongbo

The decline of soil fertility is a major constraint which results in lower levels of crop productivity, agricultural development and food security in Sub-Saharan Africa. This study is the first to perform a focalized investigation on the most interesting technological profiles to offer to each category of producers in Benin agricultural development hubs (ADHs) using the stated preference method, more precisely, the improved choice experiment method. The investigation focused on 1047 sampled plots from 962 randomly selected producers in villages of the Smallholder Agricultural Productivity Enhancement Program in Sub-Saharan Africa of the ADHs. An analysis of the experimental choice data with the endogenous attribute attendance and the latent class models was carried out to account for the attribute non-attendance phenomenon and the heterogeneity of the producers’ preferences. However, three classes of producer with different socio-economic, demographic, and soil physicochemical characteristics were identified. Thus, the heterogeneity of preferences was correlated with the attributes linked to the cost, sustainability, and frequency of plot maintenance. All producers, regardless of the ADHs, had a strong attachment to accessibility of technologies with short time restoration of soil fertility, and the ability to obtain additional benefits. These latest attributes, added to that relating to cost, tended to have a low probability of rejection in the decision-making process. These results have implications for local decision-makers facing the complex problem of resolving land degradation and local economic development challenges. The generalizability of these findings provides useful insight and direction for future studies in Sub-Saharan Africa.


2020 ◽  
Vol 4 (2) ◽  
pp. 353-362
Author(s):  
O. L. Romanenko ◽  
I. S. Kushch ◽  
A. V. Agafonova ◽  
Yu. O. Tenyukh ◽  
M. M. Solodushko ◽  
...  

During 2000–2018, the results of the application of organic and mineral fertilizers in dynamics and their effect on the content of humus and nutrients in the soils of the Zaporizhzhya region were reviewed. To control the state of soil fertility use the calculation of the balance of humus and nutrients. This makes it possible to determine the extent to which the application of nutrients with fertilizers covers their removal by crop yields. Negative tendencies have been identified, which have led to the deterioration of soil fertility in the Zaporizhia region. Measures are proposed to achieve a deficit-free balance of humus and nutrients. On average, in 2000–2018, the level of mineral fertilizer application in the Zaporizhia region remained low – 38 kg/ha (nitrogen – 28 kg, phosphorus – 7, potassium – 3 kg), and manure – only 0.2 t/ha. According to the results of agrochemical certification of agricultural lands, the dynamics of changes in the content of humus, easily hydrolyzed nitrogen, mobile compounds of phosphorus and potassium over the past 18 years has been determined. The average weighted content of humus in the soils in the VIII round was 3.44 %, IX – 3.52, X – 3.40, XI (2016–2018) – 3.57 %, which indicates the stability of this indicator. The weighted average nitrogen content, which is easily hydrolyzed during all rounds, has close values (83.6–90.3 mg/kg) and corresponds to a low level of its supply. The content of mobile phosphorus compounds during the VIII – IX rounds was quite stable (97.1–101.6 mg/kg), and in the X–XI rounds there was even an increase to 123.3–123.4 mg/kg. The phosphorus regime of soils is stable and corresponds to the increased level of security, except for the ninth round (average). Potassium regime of the soil for eighteen years also remains stable and refers to a high level of security (159.6–176.8 mg/kg). The balance of humus and nutrients in the soils of the region remains negative. There is a tendency of positive changes if we compare the results for the first (2003–2014) and second (2003–2018) periods. Thus, to achieve a positive balance of humus it is necessary to apply 2 t/ha of straw (+400 kg/ha), 20 kg/ha of nitrogen fertilizers and 6.4 t/ha of manure, and in 2003–2018 – respectively 2 t / ha straw (+400 kg/ha), 20 kg/ha of nitrogen, 5.8 t/ha of manure. Key words: soil, balance, dynamics, humus, fertility, organic and mineral fertilizers.


Author(s):  
Moses Mosonsieyiri Kansanga ◽  
Isaac Luginaah ◽  
Rachel Bezner Kerr ◽  
Laifolo Dakishoni ◽  
Esther Lupafya

Abstract Despite increasing land degradation in sub-Saharan Africa, investment in sustainable land management (SLM) remains low. Empirical evidence show that smallholder farmers tend to prioritize investing in SLM practices with short-term turnover—e.g., composting and crop residue integration—in order to improve soil fertility and yields to the neglect of practices like agroforestry whose benefits tend to materialize in a relatively longer period. While it is crucial for farmers to prioritize both short-term and long-term SLM practices for the maintenance of overall ecosystem health, the factors that shape the concurrent adoption of short-term and long-term SLM practices remain underexplored. Using data from a cross-sectional survey with smallholder farming households (n = 512) in Malawi, we employed logistic regression to examine the determinants of the concurrent adoption of short-term and long-term SLM practices. Our findings show that plot size, farmer-to-farmer knowledge sharing, presence of a chronically ill person in the household, active household labor size, wealth and women's autonomy are noteworthy determinants. A unit increase in plot size was associated with increased odds (OR = 1.41, p < 0.01) of simultaneously adopting short-term and long-term SLM practices. Similarly, a unit increase in the active labor size of the household (OR = 1.30, p < 0.001) was positively associated with the concurrent adoption of short-term and long-term SLM practices. Households with no chronically sick person were 3.2 times more likely to adopt short-term and long-term SLM practices simulataneously compared to those with chronically sick persons. Farming households that exchanged farming information (OR = 2.50, p < 0.001) with other households had significantly higher odds of adopting short-term and long-term SLM practices concurrently than those that did not share farming information. Compared to households in the poorest wealth category, those in the richer (OR = 3.14, p < 0.001) and richest (OR = 3.64, p < 0.001) wealth categories were both significantly more likely to adopt short-term and long-term SLM practices concurrently. These findings suggest that initiatives targeted at promoting the holistic adoption of SLM practices—a combination of both short-term and long-term practices—must pay attention to contextual nuances including household wealth, gender, farmer training and land access dynamics.


Sign in / Sign up

Export Citation Format

Share Document