scholarly journals Grazing and Cutting under Different Nitrogen Rates, Application Methods and Planting Density Strongly Influence Qualitative Traits and Yield of Canola Crop

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 404
Author(s):  
Sajjad Zaheer ◽  
Muhammad Arif ◽  
Kashif Akhtar ◽  
Ahmad Khan ◽  
Aziz Khan ◽  
...  

Canola crop has the potential for both seeds and grazing. Optimal planting density, time of nitrogen (N) fertilizer application and rates are the major aspects for successful qualitative traits and canola yield formation. In this content, optimization of planting density, N levels and its time of application in dual purpose canola are needed. This study was carried out in RCB design with split pot arrangement having three repeats during winter 2012–2013 and 2013–2014. The study evaluated N levels (120 and 80 kg N ha−1), cutting treatment, N application timings and planting density (20 and 40 plants m−2) effects on qualitative traits and yield of canola. No-cut treatment had 7.02%, 2.46%, and 4.26% higher, glucosinolates, oil, and protein content with 31.3% and 30.5% higher biological and grain yield respectively, compared with grazed canola. Compared with no-cut canola, grazed canola resulted in 7.74% of higher erucic acid. Further, application of N at 120 kg N ha−1 had 8.81%, 5.52%, and 6.06% higher glucosinolates, percent protein, and seed yield, respectively than 80 kg N ha−1. In-addition, the application of N into two splits was most beneficial than the rest application timings. Cutting had 15% reduction in grain yield of canola and fetched additional income of 143.6 USD compared with no-cut. Grazing resulted in a 23% reduction in grain yield while had additional income of 117.7 USD from fodder yield. Conclusively, the application of N in two splits at 120 kg N ha−1 combined with 20 plants m−2 is a promising strategy to achieve good qualitative attributes and canola yield under dual purpose system.

2020 ◽  
Vol 4 ◽  
Author(s):  
Leah L. R. Renwick ◽  
Anthony A. Kimaro ◽  
Johannes M. Hafner ◽  
Todd S. Rosenstock ◽  
Amélie C. M. Gaudin

There is an urgent need to develop resilient agroecosystems capable of helping smallholder farmers adapt to climate change, particularly drought. In East Africa, diversification of maize-based cropping systems by intercropping with grain and tree legumes may foster productivity and resilience to adverse weather conditions. We tested whether intercropping enhances drought resistance and crop and whole-system yields by imposing drought in monocultures and additive intercrops along a crop diversity gradient—sole maize (Zea mays), sole pigeonpea (Cajanus cajan), maize-pigeonpea, maize-gliricidia (Gliricidia sepium, a woody perennial), and maize-pigeonpea-gliricidia—with and without fertilizer application. We developed and tested a novel low-cost, above-canopy rainout shelter design for drought experiments made with locally-sourced materials that successfully reduced soil moisture without creating sizeable artifacts for the crop microenvironment. Drought reduced maize grain yield under fertilized conditions in some cropping systems but did not impact pigeonpea grain yield. Whole-system grain yield and theoretical caloric and protein yields in two intercropping systems, maize-pigeonpea and maize-gliricidia, were similar to the standard sole maize system. Maize-pigeonepea performed most strongly compared to other systems in terms of protein yield. Maize-pigeonpea was the only intercrop that consistently required less land than its corresponding monocultures to produce the same yield (Land Equivalent Ratio >1), particularly under drought. Despite intercropping systems having greater planting density than sole maize and theoretically greater competition for water, they were not more prone to yield loss with drought. Our results show that maize-pigeonpea intercropping provides opportunities to produce the same food on less land under drought and non-drought conditions, without compromising drought resistance of low-input smallholder maize systems.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 555 ◽  
Author(s):  
Chanchan Zhou ◽  
Yuancai Huang ◽  
Baoyan Jia ◽  
Shu Wang ◽  
Fugen Dou ◽  
...  

Nitrogen fertilization and planting density are two key factors that can interactively affect the grain yield of rice. Three different types of rice cultivars—inbred Shendao 47, inbred Shendao 505, and hybrid Jingyou 586—were applied to investigate the effects of the nitrogen (N) rate and planting density (D) on the aboveground biomass, harvest index, leaf photosynthetic features, grain yield, and yield components using a split-split-plot design at two sites over two continuous years. The main plots were assigned to four nitrogen fertilizer rates: 0 (N0), 140 (N1), 180 (N2), and 220 (N3) kg ha−1 N; the subplots were assigned to three planting densities: 25 × 104 (D1), 16.7 × 104 (D2), and 12.5 × 104 (D3) hills ha-1, and the sub-subplots were assigned to three rice cultivars. The results showed that the grain yield had a significantly positive correlation with the stomatal conductance (Gs), net photosynthesis rate (Pn), transpiration rate (Tr), chlorophyll content (SPAD value), leaf area index (LAI), panicles per unit area, and spikelets per panicle. The N rate and planting density had significant interaction effects on grain yield, and the maximum values of Shendao 47, Shendao 505, and Jingyou 586 appeared in N3D2, N2D1, and N3D3, respectively. The higher grain yield of midsized panicle Shendao 47 was mostly ascribed to both panicles per unit area and spikelets per panicle. More panicles per unit area and spikelets per panicle primarily contributed to a larger sink capacity of small-sized panicle rice Shendao 505 and large-sized panicle rice Jingyou 586. We found that the treatments N3D2, N2D1, and N3D3 could optimize the contradiction between yield formation factors for Shendao 47, Shendao 505, and Jingyou 586, respectively. Across years and sites, the regression analysis indicated that the combinations of nitrogen fertilization of 195.6 kg ha−1 with a planting density of 22 × 104 hills ha−1, 182.5 kg ha−1 with 25 × 104 hills ha−1, and 220 kg ha−1 with 13.1 × 104 hills ha−1 are recommended for medium-, small-, and large-sized panicle rice cultivars, respectively.


1996 ◽  
Vol 76 (4) ◽  
pp. 727-734 ◽  
Author(s):  
Pirjo Mäkelä ◽  
Leena Väärälä ◽  
Pirjo Peltonen-Sainio

Development of a dwarf oat (Avena sativa L.) for northern growing conditions may further improve many important agronomic features of the oat crop including lodging resistance, yield stability, yield potential, grain-straw ratio, and fertile tillering. Our objective in this study was to assess the performance of a Minnesota-adapted dwarf line at high latitudes, through measurement of several traits that characterize duration of pre- and post-anthesis growth and plant stand structure, with special reference to tiller growth and tiller productivity. Response of the dwarf line to seeding rate (250, 500, and 750 viable seeds m−2) and nitrogen fertilizer application rates (80, 120, and 160 kg N ha−1) was compared with that of a semi-dwarf line, a conventional height cultivar, and a landrace cultivar, all of which are adapted to long-day conditions. The experiments were conducted in Finland (60°13′N) in 1993 and 1994. The dwarf line produced less grain (≤ 30%) than the other lines but out-yielded the lodging-sensitive landrace in 1994 at a high seeding rate and high rate of nitrogen fertilizer application. As for the semi-dwarf line and conventional height line, the dwarf line produced the highest grain yield at 500 seeds m−2 which is the standard planting density for oat in Finland. The particularly short duration of the generative phase and associated low number of grains per main shoot panicle are likely to be principal contributors to low mean panicle-filling rate, panicle weight, and grain yield of the dwarf line. However it was better able to tiller and produce head-bearing tillers than the other lines. This increased number of tillers was, however, unable to compensate for yield reduction resulting from low yield potential of the main shoot. Key words:Avena sativa L., oat (dwarf), grain yield, landrace, partitioning, straw length, yield components


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1413
Author(s):  
Marko M. Kostić ◽  
Aristotelis C. Tagarakis ◽  
Nataša Ljubičić ◽  
Dragana Blagojević ◽  
Mirjana Radulović ◽  
...  

The challenges of the global food supply and environment conservation require ongoing scientific observations of soil-to-plant and plant-to-environment interactions with the aim of improving agriculture resource management. This study included observations of winter wheat yield and biomass of four varieties over three consecutive growing seasons and four site-year cases to assess the effects of nitrogen (N) fertilization rate and time of application on grain yield and biomass. For different wheat varieties, the full factorial design was performed, where factorial combinations of year, location, fall and spring N applications were laid out in a randomized complete block design. The N rate significantly influenced grain yield and biomass production efficiency. The time of N application had a highly significant effect on grain yield, biomass and NUE traits. The N rate of 120 kg ha−1 was recognized as a breakpoint over which the grain yield and biomass showed a downtrend. N application in the fall had a significantly higher impact on grain yield and biomass compared to spring N application. The major contribution of wheat variability production belongs to seasonal climate circumstances (<85%) and consequential intrinsic soil properties. The average difference of grain yield between varieties was 15.75%, and 12% of biomass, respectively.


2005 ◽  
Vol 53 (4) ◽  
pp. 405-415 ◽  
Author(s):  
P. Janaki ◽  
T. M. Thiyagarajan

Field experiments were conducted during 1998 and 1999 in June-September with rice variety ASD18 at the wetland farm, Tamil Nadu Agricultural University, Coimbatore, India to find out theeffect of N management approaches and planting densities on N accumulation by transplanted rice in a split plot design.The main plot consisted of three plant populations (33, 66 and 100 hills m-2) and the sub-plot treatments of five N management approaches. The results revealed thatthe average N uptake in roots and aboveground biomass progressively increased with growth stages. The mean root and aboveground biomass Nuptake were 26.1 to 130.6 and 6.4 to 17.8 kg ha-1, respectively. The N uptake of grain and straw was higher in theSesbania rostratagreen manuring + 150 kg N treatment, but it was not effective in increasing the grain yield. The mean total N uptake was found to be significantly lower at 33 hills m-2(76.9 kg ha-1) and increased with an increase in planting density (100.9 and 117.2 kg ha-1at 66 and 100 hills m-2density). N application had a significant influence on N uptake and the time course of N uptake in all the SPAD-guided N approaches. A significant regression coefficient was observed between the crop N uptake and grain yield. The relationship between cumulative N uptake at the flowering stage and the grain yield was quadratic at all three densities. The N uptake rate (µN) was maximum during the active tillering to panicle initiation period and declined sharply after that. In general, µNincreased with an increase in planting density and the increase was significant up to the panicle initiation to flowering period.thereafter, the N uptake rate was similar at densities of 66 and 100 hills m-2.


Author(s):  
Guotao Yang ◽  
Xuechun Wang ◽  
Farhan Nabi ◽  
Hongni Wang ◽  
Changkun Zhao ◽  
...  

AbstractThe architecture of rice plant represents important and complex agronomic traits, such as panicles morphology, which directly influence the microclimate of rice population and consequently grain yield. To enhance yield, modification of plant architecture to create new hybrid cultivars is considered a sustainable approach. The current study includes an investigation of yield and microclimate response index under low to high plant density of two indica hybrid rice R498 (curved panicles) and R499 (erect panicles), from 2017 to 2018. The split-plot design included planting densities of 11.9–36.2 plant/m2. The results showed that compared with R498, R499 produced a higher grain yield of 8.02–8.83 t/ha at a higher planting density of 26.5–36.2 plant/m2. The response index of light intensity and relative humidity to the planting density of R499 was higher than that of R498 at the lower position of the rice population. However, the response index of temperature to the planting density of R499 was higher at the upper position (0.2–1.4%) than at the lower position. Compared with R498, R499 at a high planting density developed lower relative humidity (78–88%) and higher light intensity (9900–15,916 lx) at the lower position of the rice population. Our finding suggests that erect panicles are highly related to grain yield microclimatic contributors under a highly dense rice population, such as light intensity utilization, humidity, and temperature. The application of erect panicle rice type provides a potential strategy for yield improvement by increasing microclimatic conditions in rice.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Temesgen Godebo ◽  
Fanuel Laekemariam ◽  
Gobeze Loha

AbstractBread wheat (Triticum aestivum L.) is one of the most important cereal crops in Ethiopia. The productivity of wheat is markedly constrained by nutrient depletion and inadequate fertilizer application. The experiment was conducted to study the effect of nitrogen (N) and potassium (K) fertilizer rates on growth, yield, nutrient uptake and use efficiency during 2019 cropping season on Kedida Gamela Woreda, Kembata Tembaro Zone Southern Ethiopia. Factorial combinations of four rates of N (0, 23, 46 and 69 kg Nha−1) and three rates of K2O (0, 30 and 60 kg Nha−1) in the form of urea (46–0-0) and murate of potash (KCl) (0-0-60) respectively, were laid out in a randomized complete block design with three replications. The results showed that most parameters viz yield, yield components, N uptake and use efficiency revealed significant differences (P < 0.05) due to interaction effects of N and K. Fertilizer application at the rate of 46 N and 30 kg K ha−1 resulted in high grain yield of 4392 kg ha− 1 and the lowest 1041 from control. The highest agronomic efficiency of N (52.5) obtained from the application of 46 kg N ha−1. Maximum physiological efficiency of N (86.6 kg kg−1) and use efficiency of K (58.6%) was recorded from the interaction of 46 and 30 kg K ha−1. Hence, it could be concluded that applying 46 and 30 kg K ha−1was resulted in high grain yield and economic return to wheat growing farmers of the area. Yet, in order to draw sound conclusion, repeating the experiment in over seasons and locations is recommended.


Sign in / Sign up

Export Citation Format

Share Document