scholarly journals Grafting cv. Grechetto Gentile Vines to New M4 Rootstock Improves Leaf Gas Exchange and Water Status as Compared to Commercial 1103P Rootstock

Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 708 ◽  
Author(s):  
Tommaso Frioni ◽  
Arianna Biagioni ◽  
Cecilia Squeri ◽  
Sergio Tombesi ◽  
Matteo Gatti ◽  
...  

M4 is a relatively new rootstock that was selected for increased resilience of vineyards across hot regions where meteorological drought is often coupled to water scarcity. However, M4 has thus far been tested only against water-stress sensitive rootstocks. Against this backdrop, the aim of the present work is to examine the water status and gas exchange performances of vines grafted to M4 in comparison to those of vines grafted to a commercial stock that is drought-tolerant, 1103 Paulsen (1103P), under a progressive water deficit followed by re-watering. This study was undertaken on Grechetto Gentile, a cultivar that is renowned for its rather conservative water use (near-isohydric behavior). While fifty percent of both grafts were fully irrigated (WW), the remaining underwent progressive water stress by means of suspending irrigation (WS). Soil and leaf water status, as well as leaf gas exchanges, along with chlorophyll fluorescence, were followed daily from 1 day pre-stress (DOY 176) until re-watering (DOY 184). Final leaf area per vine, divided in main and lateral contribution, was also assessed. While 1103P grafted vines manifested higher water use under WW conditions, progressive stress evidenced a faster water depletion by 1103P, which also maintained slightly more negative midday leaf water potential (Ψleaf) as compared to M4 grafted plants. Daily gas exchange readings, as well as diurnal assessment performed at the peak of stress (DOY 183), also showed increased leaf assimilation rates (A) and water use efficiency (WUE) in vines grafted on M4, which were also less susceptible to photosynthetic downregulation. Dynamic of stomatal closure targeted at 90% reduction of leaf stomatal conductance showed a similar behavior among rootstocks since the above threshold was reached by both at Ψleaf of about −1.11 MPa. The same fractional reduction in leaf A was reached by vines grafted on M4 at a Ψleaf of −1.28 MPa vs. −1.10 MPa measured in 1103P, meaning that using M4 as a rootstock will postpone full stomatal closure. While mechanisms involved in improved CO2 uptake in M4-grafted vines under moderate-to-severe stress are still unclear, our data support the hypothesis that M4 might outscore the performance of a commercial drought-tolerant genotype (1103P) and can be profitably used as a tool to improve the resilience of vines to summer drought.

2016 ◽  
Vol 40 (3) ◽  
pp. 455-464 ◽  
Author(s):  
Maria da Assunção Machado Rocha ◽  
Claudivan Feitosa de Lacerda ◽  
Marlos Alves Bezerra ◽  
Francisca Edineide Lima Barbosa ◽  
Hernandes de Oliveira Feitosa ◽  
...  

ABSTRACT The low availability of water in the soil is one of the limiting factors for the growth and survival of plants. The objective of this study was to evaluate the responses of physiological processes in early growth of guanandi (Calophyllum brasilense Cambess), African mahogany (Khayai vorensis A. Chev) and oiti (Licaniato mentosa Benth Fritsch) over a period of water stress and other of rehydration in the soil with and without addition of organic matter. The study was conducted in a greenhouse and the experimental design was completely randomised into a 3 x 2 x 2 factorial scheme, comprising three species (guanandi, African mahogany, and oiti), two water regimes (with and without water restriction) and two levels of organic fertilisation (with and without the addition of organic matter). Irrigation was suspended for 15 days in half of the plants, while the other half (control) continued to receive daily irrigation, the soil being maintained near field capacity for these plants. At the end of the stress period, the plants were again irrigated for 15 days to determine their recovery. Water restriction reduced leaf water potential and gas exchange in the three species under study, more severely in soil with no addition of organic matter. The addition of this input increased soil water retention and availability to the plants during the suspension of irrigation, reducing the detrimental effects of the stress. During the period of rehydration, there was strong recovery of water status and leaf gas exchange. However recovery was not complete, suggesting that some of the effects caused by stress irreversibly affected cell structures and functions. However, of the species being studied, African mahogany displayed a greater sensitivity to stress, with poorer recovery.


1989 ◽  
Vol 16 (6) ◽  
pp. 549 ◽  
Author(s):  
SL Steinberg ◽  
MJ Mcfarland ◽  
JC Miller

A gradation, that reflects the maturity of the leaves, exists in the leaf water, osmotic and turgor potential and stomatal conductance of leaves along current and 1-year-old branches of peach. Predawn leaf water potentials of immature folded leaves were approximately 0.24 MPa lower than mature leaves under both well-watered and dry conditions. During the daytime the leaf water potential of immature leaves reflected the water potential produced by water flux for transpiration. In well- watered trees, mature and immature unfolded leaves had a solute potential at least 0.5 MPa lower than immature folded leaves, resulting in a turgor potential that was approximately 0.8 MPa higher. The turgor requirement for growth appeared to be much less than that maintained in mature leaves. As water stress developed and leaf water potentials decreased, the osmotic potential of immature folded leaves declined to the level found in mature leaves, thus maintaining turgor. In contrast, mature leaves showed little evidence of turgor maintenance. Stomatal conductance was lower in immature leaves than in fully mature leaves. With the onset of water stress, conductance of mature leaves declined to a level near that of immature leaves. Loss of turgor in mature leaves may be a major factor in early stomatal closure. It was concluded that osmotic adjustment played a role in maintenance of a leaf water status favorable for some growth in water-stressed immature peach leaves.


OENO One ◽  
2017 ◽  
Vol 51 (1) ◽  
Author(s):  
Vivian Zufferey ◽  
Jean-Laurent Spring ◽  
Thibaut Verdenal ◽  
Agnès Dienes ◽  
Sandrine Belcher ◽  
...  

<p><strong>Aims : </strong>The aims of this study were to investigate the physiological behavior (plant hydraulics, gas exchange) of the cultivar Pinot Noir in the field under progressively increasing conditions of water stress and analyze the effects of drought on grape and wine quality.</p><p><strong>Methods and results : </strong>Grapevines of the variety <em>Vitis vinifera</em> L. cv. Pinot Noir (clone 9-18, grafted onto 5BB) were subjected to different water regimes (irrigation treatments) over the growing season. Physiological indicators were used to monitor plant water status (leaf and stem water potentials and relative carbon isotope composition (d<sup>13</sup>C) in must sugars). Leaf gas exchange (net photosynthesis A and transpiration E), leaf stomatal conductance (gs), specific hydraulic conductivity in petioles (K<sub>petiole</sub>), yield components, berry composition at harvest, and organoleptic quality of wines were analyzed over a 7-year period, between 2009 and 2015, under relatively dry conditions in the canton of Wallis, Switzerland. A progressively increasing water deficit, observed throughout the season, reduced the leaf gas exchange (A and E) and gs in non-irrigated vines. The intrinsic water use efficiency (WUE<sub>i</sub>, A/gs) increased during the growing season and was greater in water-stressed vines than in well-watered vines (irrigated vines). This rise in WUE<sub>i</sub> was correlated with an increase in d<sup>13</sup>C in must sugars at harvest. Drought led to decreases in K<sub>petiole</sub>, E and sap flow in stems. A decrease in vine plant vigor was observed in vines that had been subjected to water deficits year after year. Moderate water stress during ripening favored sugar accumulation in berries and caused a reduction in total acidic and malic contents in must and available nitrogen content (YAN). Wines produced from water-stressed vines had a deeper color and were richer in anthocyanins and phenol compounds compared with wines from well-watered vines with no water stress. The vine water status greatly influenced the organoleptic quality of the resulting wines. Wines made from non-irrigated vines with a water deficit presented more structure and higher-quality tannins. They were also judged to be more full-bodied and with blended tannins than those made from irrigated vines.</p><p><strong>Conclusions : </strong>Grape ripening and resulting Pinot Noir wines were found to be largely dependent on the water supply conditions of the vines during the growing season, which influenced gas exchange and plant hydraulics.</p><p><strong>Significance and impact of the study : </strong>Plant water status constitutes a key factor in leaf gas exchange, canopy water use efficiency, berry composition and wine quality.</p>


2021 ◽  
Author(s):  
Angelika Kübert ◽  
Kathrin Kühnhammer ◽  
Ines Bamberger ◽  
Erik Daber ◽  
Jason De Leeuw ◽  
...  

&lt;p&gt;Increasing drought in the tropics is a major threat to rainforests and can strongly harm plant communities. Understanding species-specific water use strategies to drought and the subsequent recovery is therefore important for estimating the risk to tropical rainforest ecosystems of drought. Conducting a large-scale long-term drought experiment in a model rainforest ecosystem (Biosphere 2 WALD project), we evaluated the role of plant physiological responses, above and below ground, in response to drought and subsequent recovery in five species (3 canopy species, 2 understory species). The model rainforest was exposed to a 9.5-week lasting drought. Severe drought was ended with a deep water pulse strongly enriched in &lt;sup&gt;2&lt;/sup&gt;H, which allowed us to distinguish between deep and shallow rooting plants, and subsequent rain (natural abundance range of &lt;sup&gt;2&lt;/sup&gt;H). We assessed plant physiological responses by leaf water potential, sap flow and high resolution monitoring of leaf gas exchange (concentrations and stable isotopes of H&lt;sub&gt;2&lt;/sub&gt;O and CO&lt;sub&gt;2&lt;/sub&gt;). Thereby, we could derive plant water uptake and leaf water use efficiency (WUE&lt;sub&gt;leaf&lt;/sub&gt;) in high temporal resolution, revealing short-term and long-term responses of plant individuals to drought and rewetting. The observed water use strategies of species and plants differed widely. No uniform response in assimilation (A) and transpiration (T) to drought was found for species, resulting in decreasing, relatively constant, or increasing WUE&lt;sub&gt;leaf&lt;/sub&gt; across plant individuals. While WUE&lt;sub&gt;leaf&lt;/sub&gt; of some plant individuals strongly decreased due to a breakdown in A, others maintained relatively high T and A and thus constant WUE&lt;sub&gt;leaf, &lt;/sub&gt;or increased WUE&lt;sub&gt;leaf&lt;/sub&gt; by decreasing T while keeping A relatively high. We expect that the observed plant-specific responses in A, T and WUE&lt;sub&gt;leaf&lt;/sub&gt; were strongly related to the plant individuals' access to soil water. We assume that plant individuals with constant WUE&lt;sub&gt;leaf&lt;/sub&gt; could maintain their leaf gas exchange due to access to water of deeper soil layers, while plants with increasing/decreasing WUE&lt;sub&gt;leaf&lt;/sub&gt; mainly depended on shallow soil water and only had limited or no access to deep soil water. We conclude that the observed physiological responses to drought were not only determined by species-specific water use strategies but also by the diverse strategies within species, mainly depending on the plant individuals' size and place of location. Our results highlight the plasticity of water use strategies beyond species-specific strategies and emphasize its importance for species&amp;#8217; survival in face of climate change and increasing drought.&lt;/p&gt;


2004 ◽  
Vol 16 (1) ◽  
pp. 7-16 ◽  
Author(s):  
Carlos Henrique Britto de Assis Prado ◽  
Zhang Wenhui ◽  
Manuel Humberto Cardoza Rojas ◽  
Gustavo Maia Souza

Predawn leaf water potential (psipd) and morning values of leaf gas exchange, as net photosynthesis (A), stomatal conductance (gs), transpiration (E), and morning leaf water potential (psimn) were determined seasonally in 22 woody cerrado species growing under natural conditions. Despite the lower mean values of psipd in the dry season (-0.35 ± 0.23 MPa) compared to the wet season (-0.08 ± 0.03 MPa), the lowest psipd in the dry season (-0.90 ± 0.00 MPa) still showed a good nocturnal leaf water status recovery for all species studied through out the year. Mean gs values dropped 78 % in the dry season, when the vapor pressure of the air was 80% greater than in the wet season. This reduction in gs led to an average reduction of 33% in both A and E, enabling the maintainance of water use efficiency (WUE) during the dry season. Network connectance analysis detected a change in the relationship between leaf gas exchange and psimn in the dry season, mainly between gs-E and E-WUE. A slight global connectance value increase (7.25 %) suggested there was no severe water stress during the dry season. Multivariate analysis showed no link between seasonal response and species deciduousness, suggesting similar behavior in remaining leaves for most of the studied species concerning leaf gas exchange and psimn under natural drought.


OENO One ◽  
2020 ◽  
Vol 54 (3) ◽  
pp. 553-568
Author(s):  
Vivian Zufferey ◽  
Thibaut Verdenal ◽  
Agnès Dienes ◽  
Sandrine Belcher ◽  
Fabrice Lorenzini ◽  
...  

Aims: The aim of the present study was to analyse the impact of different water regimes on the physiological and agronomical behavior of an aromatic white grapevine (cv. Arvine) by means of various levels of irrigation. The consequences of the plant water status were evaluated by carrying out a chemical (aromatic precursors) and sensorial analysis of the resulting wines.Methods and results: Adult vines of Vitis vinifera L. cv. Arvine grafted onto 5BB were subjected to different water regimes (various levels of irrigation) during the growing season. Physiological indicators were used to monitor the plant water status [pre-dawn leaf (ΨPD) and stem (ΨSTEM) water potentials and carbon isotope composition (d13C) in the must]. Gas exchange (net photosynthesis AN and transpiration E), stomatal conductance (gs), yield parameters, berry composition at harvest, analysis of potential grape aromatic properties (glycosyl-glucose G-G, precursor 3-mercaptohexanol P 3-MH) and the sensorial quality of wines were analysed over a period of 8 consecutive years (2009-2016) in the Agroscope experimental vineyard in Leytron under the relatively dry conditions of the Rhône valley in Wallis, Switzerland.In the non-irrigated vines, the progressively increasing water deficit observed over the season reduced the leaf gas exchange (AN and E) and gs. The intrinsic water use efficiency (WUEi, A/gs) increased over the season and was greater in the vines that had suffered water restriction than in the irrigated vines. The rise in WUEi was correlated with an increase in d13C in the must sugars at harvest. A decrease in plant vigor was observed in the water stressed vines over multiple years. Moderate to high water stress during fruit ripening lowered the contents of total and malic acidity in the musts and the content of yeast available nitrogen (YAN). On the other hand, contents in sugar and the aromatic precursor (P-3MH) in berries were not influenced by the vine water status. The G-G values for berries increased with rising water stress in the non-irrigated vines. The wines from the plants subjected to water stress and to yeast available nitrogen deficiency (non-irrigated vines during hot and dry seasons) had a less distinctive typicity, and developed a lower aromatic expression with a more bitter taste, than the wines from the non-stressed plants. Overall, and compared with the stressed vines, the organoleptic characteristics and quality of Arvine wines from vines which had not undergone restrictions in water and nitrogen during the growing season were appreciated more.Conclusions: The vine’s physiological behavior (leaf gas exchange, plant vigor) and agronomic parameters (yield, berry composition), together with the quality of white aromatic Arvine wines, were strongly influenced by vine water regimes during the growing season.Significance and impact of the study: Vine water status and must nitrogen contents are key factors in grape composition and in the sensorial quality of resulting aromatic white wines.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yongtian Luo ◽  
Che-Ling Ho ◽  
Brent R. Helliker ◽  
Eleni Katifori

Leaf hydraulic networks play an important role not only in fluid transport but also in maintaining whole-plant water status through transient environmental changes in soil-based water supply or air humidity. Both water potential and hydraulic resistance vary spatially throughout the leaf transport network, consisting of xylem, stomata and water-storage cells, and portions of the leaf areas far from the leaf base can be disproportionately disadvantaged under water stress. Besides the suppression of transpiration and reduction of water loss caused by stomatal closure, the leaf capacitance of water storage, which can also vary locally, is thought to be crucial for the maintenance of leaf water status. In order to study the fluid dynamics in these networks, we develop a spatially explicit, capacitive model which is able to capture the local spatiotemporal changes of water potential and flow rate in monocotyledonous and dicotyledonous leaves. In electrical-circuit analogs described by Ohm's law, we implement linear capacitors imitating water storage, and we present both analytical calculations of a uniform one-dimensional model and numerical simulation methods for general spatially explicit network models, and their relation to conventional lumped-element models. Calculation and simulation results are shown for the uniform model, which mimics key properties of a monocotyledonous grass leaf. We illustrate water status of a well-watered leaf, and the lowering of water potential and transpiration rate caused by excised water source or reduced air humidity. We show that the time scales of these changes under water stress are hugely affected by leaf capacitance and resistances to capacitors, in addition to stomatal resistance. Through this modeling of a grass leaf, we confirm the presence of uneven water distribution over leaf area, and also discuss the importance of considering the spatial variation of leaf hydraulic traits in plant biology.


2012 ◽  
Vol 137 (6) ◽  
pp. 400-410 ◽  
Author(s):  
Shinsuke Agehara ◽  
Daniel I. Leskovar

Excess transpiration relative to water uptake often causes water stress in transplanted vegetable seedlings. Abscisic acid (ABA) can limit transpirational water loss by inducing stomatal closure and inhibiting leaf expansion. We examined the concentration effect of exogenous ABA on growth and physiology of muskmelon (Cucumis melo L.) seedlings during water stress and rehydration. Plants were treated with seven concentrations of ABA (0, 0.24, 0.47, 0.95, 1.89, 3.78, and 7.57 mm) and subjected to 4-day water withholding. Application of ABA improved the maintenance of leaf water potential and relative water content, while reducing electrolyte leakage. These effects were linear or exponential to ABA concentration and maximized at 7.57 mm. Gas-exchange measurements provided evidence that such stress control is attributed to ABA-induced stomatal closure. First, net CO2 assimilation rate and stomatal conductance initially decreased with increasing ABA concentration by up to 95% and 70%, respectively. A follow-up study (≤1.89 mm ABA) confirmed this result with or without water stress and further revealed a close positive correlation between intercellular CO2 concentration and net CO2 assimilation rate 1 day after treatment (r2 > 0.83). In contrast, ABA did not affect leaf elongation, indicating that stress alleviation was not mediated by leaf area adjustment. After 18 days of post-stress daily irrigation, dry matter accumulation showed a quadratic concentration-response, increasing up to 1.89 mm by 38% and 44% in shoot and roots, respectively, followed by 16% to 18% decreases at >1.89 mm ABA. These results suggest that excess levels of ABA delay post-stress growth, despite the positive effect on the maintenance of water status and membrane integrity. Another negative side effect was chlorosis, which accelerated linearly with increasing ABA concentration, although it was reversible upon re-watering. The optimal application rate of ABA should minimize these negative effects, while keeping plant water stress to an acceptable level.


Sign in / Sign up

Export Citation Format

Share Document