scholarly journals Grafting onto an Appropriate Rootstock Reduces the Impact on Yield and Quality of Controlled Deficit Irrigated Pepper Crops

Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1529
Author(s):  
Ramón Gisbert-Mullor ◽  
Nuria Pascual-Seva ◽  
María Amparo Martínez-Gimeno ◽  
Lidia López-Serrano ◽  
Eduardo Badal Marín ◽  
...  

In this study, hybrid pepper rootstock NIBER® is tested for its ability to overcome water stress situations under soil conditions. The impact of deficit irrigation (DI) on yield and fruit quality, irrigation water use efficiency is evaluated, and consequently, the agronomic impact of employing water-stress tolerant rootstock is compared to ungrafted pepper plants. For this purpose, plants of the California-type sweet pepper ‘Maestral F1’ grafted onto NIBER® underwent a sustained DI regime during seasons 2018 and 2019 and were compared to their respective controls. Plants were drip-fertirrigated, and volumetric soil water content was continuously monitored by capacitance sensors. Gas exchange and leaf water potential measurements were taken early in the morning and midday 58, 79, and 114 days after transplanting. Plant and fruit dry biomass, marketable quality, blossom-end rot incidence and harvest index were also determined. For consecutive years, our results confirmed that grafting a pepper cultivar onto an appropriate rootstock (NIBER® in this case) as part of a DI strategy can overcome the negative effects of sustained water stress conditions. The plant biomass production and fruit yields of grafted plants were less affected by DI due to less sensitivity to water stress. This can be attributed to a less marked reduction in shoot dry weight in the grafted plants, which allowed greater whole photosynthesis by maintaining sink activity compared to ungrafted plants.

2014 ◽  
Vol 24 (6) ◽  
pp. 724-730 ◽  
Author(s):  
Kimberly A. Moore ◽  
Amy L. Shober ◽  
Gitta Hasing ◽  
Christine Wiese ◽  
Nancy G. West

Previous research indicated that acceptable quality annual and perennial plant species can be grown in the landscape with low nitrogen (N) inputs. However, information on the impact of soil conditions and N use by ornamental plants grown in central Florida is lacking in the literature. Our objective was to evaluate plant growth and quality response of eight warm-season annuals, seven cool-season annuals, and four herbaceous perennial species to a range of N fertilizer rates when plants were grown in landscape beds containing native field soil or subsoil fill. A slow-release N source (42N–0P–0K) was applied every 12 weeks at annual N rates of 3, 5, or 7 lb/1000 ft2 for a period of 18 weeks (annual species) or 1, 3, or 5 lb/1000 ft2 for a period of 54 weeks (perennial species). Plants were evaluated for aesthetic quality every 6 weeks and shoot dry weight was measured at completion of the experiment. Dry weight production and aesthetic quality of most species evaluated was unaffected by N rate. For several species, shoot dry weight was higher when planted in the field plots containing native soil [alyssum (Lobularia maritima) ‘Bada Bing White’ wax begonia (Begonia ×semperflorens-cultorum), dahlberg daisy (Thymophylla tenuiloba), ‘Survivor Hot Pink’ geranium (Pelargonium ×hortorum), gomphrena (Gomphrena globosa), ‘Blue Puffs Improved’ (‘Blue Danube’) ageratum (Ageratum houstonianum), blanket flower (Gaillardia pulchella), goldenrod (Solidago chapmanii), ‘Mystic Spires’ salvia (Salvia longispicata ×farinacea)]. Quality response to soil condition was mixed over the course of the study. Several species performed as well (or better) in the field as when planted in the subsoil fill soils. These results illustrate that some landscape plant species are able to survive and thrive under various soil and fertility conditions. These “tougher” species may be good choices for installation in landscapes with marginal native soils or disturbed urban landscape soils.


2006 ◽  
Vol 54 (4) ◽  
pp. 469-485 ◽  
Author(s):  
G. Singh ◽  
D. Wright

Effects of one pre-emergence herbicide (terbutryn/terbuthylazine) and one post-emergence herbicide (bentazone) along with unweeded and hand-weeded controls on weeds and on the nodulation, nitrogenase activity, nitrogen content, growth and yield of pea (Pisum sativum) were studied. Terbutryn/terbuthylazine was applied pre-emergence @ 1.40, 2.80 and 5.60 kg/hawhereas bentazone was sprayed 6 weeks after sowing @ 1.44, 2.88 and 5.76 kg/h. Terbutryn/terbuthylazine controlled all the weeds very effectively, whereas bentazone did not control some weeds such as Polygonum aviculare, Poa annua and Elymus repens. The herbicides decreased the number of nodules, the dry weight of nodules, the nitrogenase activity, the shoot dry weight, the nitrogen content in the straw and seeds, and the seed yield of peas, the effects generally being higher at higher rates of application. The adverse effects of herbicides on these parameters might be due to their effects on plant growth, as both the herbicides are known to adversely affect photosynthesis. Nitrogenase activity did not correlate well with plant-N content or shoot dry weight. However, there was a strong relationship between plant biomass and plant-N content, which suggests that researchers can rely on these parameters for studying the effects of treatments on nitrogen fixation, rather than measuring nitrogenase activity.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Ricksy Prematuri ◽  
Maman Turjaman ◽  
Takumi Sato ◽  
Keitaro Tawaraya

Opencast nickel mining is common in natural forests of Indonesia. However, rehabilitation of postmining degraded land is difficult. We investigated the effect of opencast nickel mining on soil chemical properties and the growth of two fast-growing tropical tree species, Falcataria moluccana and Albizia saman. Soil was collected from post-nickel mining land and a nearby natural forest. Soil pH, available phosphorus (P) concentration, total carbon (TC) and total nitrogen (TN) concentration, C/N ratio, cation exchange capacity (CEC), and exchangeable K, Na, Mg, Ca, Fe, and Ni concentrations were determined. Falcataria moluccana and A. saman were then grown in the collected soils for 15 weeks in a greenhouse. Shoot height and shoot and root dry weights of the seedlings were measured. The post--nickel mining soils TN, TC, available P, CEC, and exchangeable Ca and Na concentrations decreased by 98%, 93%, 11%, 62%, 85%, and 74%, respectively, in comparison with the natural forest soils. The pH of postmining soil was higher than natural forest soil. Shoot dry weight of F. moluccana seedlings grown in postmining soil was significantly ( P < 0.05 ) lower than that of seedlings grown in natural forest soil. However, there was no difference in shoot dry weight between A. saman seedlings grown in natural forest soil and postmining soil, as well as root dry weights of both species. The results indicate that opencast nickel mining decreased soil fertility, which subsequently inhibited the growth of F. moluccana and A. saman seedlings.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 518
Author(s):  
Juan M. González ◽  
Jaime Redondo-Pedraza ◽  
Yolanda Loarce ◽  
Rifka Hammami ◽  
Eva Friero ◽  
...  

The root is the organ responsible for the uptake of water and therefore has a very important role in drought tolerance. The aims of the present work were to characterize nine traits of the root system architecture (RSA) and the shoot dry weight (W) of twelve genotypes of Brachypodium spp. under water stress and to establish the relationship between RSA phenotyping traits and SSRs. Two culture media, one standard (SM) and one (PEG) to induced water stress have been used. In SM medium, B. stacei had the highest values of W and all the RSA traits, except the mean diameter of the seminal roots, followed by B. hybridum and B. distachyon. In the PEG medium, root length increased in B. distachyon, decreased in B. hybridum and remained the same in B. stacei. A two-way hierarchical cluster analysis from 117 polymorphic SSRs and the traits of the RSA of the Brachypodium spp. genotypes, was performed. Brachypodium genotypes were separated into three groups corresponding to each species. In the second way of the hierarchical clustering association were observed between five RSA variables and SSR markers, which could be useful in the search for genes or QTLs related to RSA characters.


HortScience ◽  
2007 ◽  
Vol 42 (2) ◽  
pp. 344-348 ◽  
Author(s):  
S.M. Scheiber ◽  
E.F. Gilman ◽  
M. Paz ◽  
K.A. Moore

Ilex cornuta Lindl. & Paxt. ‘Burfordii Nana’ (dwarf burford holly), Pittosporum tobira [Dryand]. ‘Variegata’ (pittosporum), and Viburnum odorotissimum Ker Gawl. (sweet viburnum) were transplanted into field plots in an open-sided, clear polyethylene-covered shelter to evaluate growth, aesthetic quality, and establishment rates in response to 2-, 4-, or 7-d irrigation frequencies. Establishment was delayed 1 to 2 months for I. cornuta ‘Burrford Nana’ irrigated every 7 d compared with 2- and 4-d frequencies; however, growth and aesthetic quality were similar among treatments. Plants irrigated every 7 d also had higher cumulative water stress levels. Leaf area, shoot dry weight, and total biomass increased among P. tobira ‘Variegata’ and V. odorotissimum irrigated every 2 d. Pittosporum tobira ‘Variegata’ and V. odorotissimum irrigated every 2 d also had greater canopy size and root dry weight, respectively. Neither cumulative water stress nor establishment was affected by irrigation frequency for either species.


HortScience ◽  
2007 ◽  
Vol 42 (7) ◽  
pp. 1695-1699 ◽  
Author(s):  
Erin Alvarez ◽  
S.M. Scheiber ◽  
Richard C. Beeson ◽  
David R. Sandrock

Nonnative Miscanthus sinensis Anderss ‘Adagio’ and native Eragrostis spectabilis (Pursh) Steud. were evaluated for drought tolerance in a rain-excluded landscape setting in sandy soil in response to irrigation application volumes of 0 L, 0.25 L, 0.5 L, or 0.75 L. As irrigation rates increased, plant mass, canopy size, and shoot-to-root ratios increased for both species, being greatest at the 0.75-L rate. Shoot dry weight, root dry weight, total biomass, and shoot-to-root ratios were greater for E. spectabilis than M. sinensis. Cumulative water stress integral was also greater for E. spectabilis. Greater growth in conjunction with higher cumulative water stress indicates the native E. spectabilis is anisohydric and more drought-tolerant than the isohydric nonnative M. sinensis.


2014 ◽  
Vol 76 ◽  
pp. 183-188
Author(s):  
Keith Widdup ◽  
Shirley Nichols ◽  
Warren Williams ◽  
Isabelle Verry ◽  
Ben Harvey

Abstract White clover (Trifolium repens L.) is valued for its contribution to pasture quality and utilisation by animals, compatibility with grass, and fixation of nitrogen. However, it is limited by poor adaptation to drought. Hybridisation with Trifolium uniflorum L. may have potential to improve the drought resistance of white clover. An experiment in a rain shelter facility with contrasting moisture treatments, and a field evaluation under dryland conditions, were used to compare the agronomic potential of these interspecific hybrids (ISH) with white clover in moisture limited conditions. In the rain shelter experiment, there were smaller effects of water stress on shoot dry weight (DW), leaf area, internode length and senescence of first backcross generation hybrids compared with white clover and second backcross generation hybrids. Differences in photosynthetic responses were possibly influenced by the effect of root DW allocation on water uptake. In the field evaluation, growth scores of a wider range of hybrid families during summer moisture stress concurred with the results under water stress in the rain shelter. Growth of some ISH families outperformed the best white clover cultivars, particularly in the third and most stressful summer and this result was a key performance indicator of the value of the hybrids for drought prone areas. These findings using early, unselected, hybrid populations indicate the potential for further selection of elite, adapted cultivars from ISH breeding strategies. Keywords: Interspecific clover hybrid, drought resistance, rain shelter, field evaluation


1996 ◽  
Vol 121 (4) ◽  
pp. 699-704 ◽  
Author(s):  
Yaping Si ◽  
Royal D. Heins

Sweet pepper (Capsicum annuum `Resistant Giant no. 4') seedlings were grown for 6 weeks in 128-cell plug trays under 16 day/night temperature (DT/NT) regimes from 14 to 26 °C. Seedling stem length, internode length, stem diameter, leaf area, internode and leaf count, plant volume, shoot dry weight (DW), seedling index, and leaf unfolding rate (LUR) were primarily functions of average daily temperature (ADT); i.e., DT and NT had similar effects on each growth or development parameter. Compared to ADT, the difference (DIF, where DIF = DT - NT) between DT and NT had a smaller but still statistically significant effect on stem and internode length, leaf area, plant volume, stem diameter, and seedling index. DIF had no effect on internode and leaf count, shoot DW, and LUR. The root: shoot ratio and leaf reflectance were affected by DT and DIF. Positive DIF (DT higher than NT) caused darker-green leaf color than negative DIF. The node at which the first flower initiated was related to NT. The number of nodes to the first flower on pepper plugs grown at 26 C NT was 1.2 fewer than those of plants grown at 14 °C NT.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2269
Author(s):  
Widad Al Azzawi ◽  
Muhammad Bilal Gill ◽  
Foad Fatehi ◽  
Meixue Zhou ◽  
Tina Acuña ◽  
...  

Potassium deficiency is one of the major issues affecting crop production around the globe. Giving the high cost of potassium fertilizers and environmental concerns related to inappropriate fertilization practices, developing more potassium use efficient (KUE) varieties is critical for sustainable food production in agricultural systems. In this study, we analysed the impact of potassium availability on agronomical attributes of thirty barley genotypes grown at four different levels of potassium (0.002 mM, 0.02 mM, 2 mM, 20 mM) under glasshouse conditions. The results showed that the availability of potassium in the soil had a major effect on yield components i.e., spike number, grain number and grain weight. Furthermore, grain weight showed a strong correlation with grain number and spike number at all levels of potassium supply. Although an increase in potassium supply led to an increase in plant height in all genotypes, the correlation with grain weight was very weak at all levels. Potassium supplementation caused an increase in shoot dry weight, which also showed a weak correlation with grain weight at the 0.002 mM potassium supply level. The genotypes Gebeina, Skiff, YF374, Flagship and YF374 were highly efficient in performing at suboptimal K supply levels and, thus, can be recommended to be grown in K-impoverished soils. We also suggest that grain and spike numbers could be used as proxies for KUE studies, to construct DH lines and identify QTL to improve low potassium tolerance and KUE in barley.


2012 ◽  
pp. 61-72 ◽  
Author(s):  
Matilda Djukic ◽  
Danijela Djunisijevic-Bojovic ◽  
Mihailo Grbic ◽  
Dragana Skocajic ◽  
Dragica Obratov-Petkovic ◽  
...  

Relative amounts of nutrients, especially nitrogen, the most abundant macro-element, and also the distribution of ammonium ions in relation to nitrate ions, in the soils of different ecosystems, are determined by many factors. The most important are: temperature, pH of substrate, accumulation of organic matter, presence of allelopathic compounds, degree of oxygenation, etc. The ability of plants to adapt to these variations influences their production of bio-mass, the rate of expansion in different habitats, and the impact on ecosystem and biodiversity. This paper analyzes the impact of different forms of nitrogen (NO3 - and NH4 +) on the growth of seedlings of invasive species Acer negundo L. and Ailanthus altissima (Mill.) Swingle. The results show that nitrogen nutrition only in the form of NH4 + ions significantly affects the reduction in shoot dry weight. Compared to the nutrition with both forms of nitrogen together, aerial parts of Ailanthus altissima were reduced by 62.5%, and leaf area by 66.7%, while Acer negundo seedlings had reduction in dry mass of aboveground part by 89.5%, root by 81.2% and leaf area by 85.8%. Nutrition with nitrate form of nitrogen led to a proportionally small, but statistically significant decrease in dry mass of aboveground parts and roots as well as leaf area of Acer negundo, while in Ailanthus altissima seedlings, it was only the mass reduction of aboveground parts that was significantly influenced, so it can be assumed that this species is more resistant to the lack of both forms of nitrogen. The fact that both species produced significantly more biomass when nitrogen was present in both forms may be important in controlling the spread of alien species, or in their potential use in phytoremediation.


Sign in / Sign up

Export Citation Format

Share Document