scholarly journals Effect of Soil Type and Nitrogen Rate on Growth of Annual and Perennial Landscape Plants in Florida

2014 ◽  
Vol 24 (6) ◽  
pp. 724-730 ◽  
Author(s):  
Kimberly A. Moore ◽  
Amy L. Shober ◽  
Gitta Hasing ◽  
Christine Wiese ◽  
Nancy G. West

Previous research indicated that acceptable quality annual and perennial plant species can be grown in the landscape with low nitrogen (N) inputs. However, information on the impact of soil conditions and N use by ornamental plants grown in central Florida is lacking in the literature. Our objective was to evaluate plant growth and quality response of eight warm-season annuals, seven cool-season annuals, and four herbaceous perennial species to a range of N fertilizer rates when plants were grown in landscape beds containing native field soil or subsoil fill. A slow-release N source (42N–0P–0K) was applied every 12 weeks at annual N rates of 3, 5, or 7 lb/1000 ft2 for a period of 18 weeks (annual species) or 1, 3, or 5 lb/1000 ft2 for a period of 54 weeks (perennial species). Plants were evaluated for aesthetic quality every 6 weeks and shoot dry weight was measured at completion of the experiment. Dry weight production and aesthetic quality of most species evaluated was unaffected by N rate. For several species, shoot dry weight was higher when planted in the field plots containing native soil [alyssum (Lobularia maritima) ‘Bada Bing White’ wax begonia (Begonia ×semperflorens-cultorum), dahlberg daisy (Thymophylla tenuiloba), ‘Survivor Hot Pink’ geranium (Pelargonium ×hortorum), gomphrena (Gomphrena globosa), ‘Blue Puffs Improved’ (‘Blue Danube’) ageratum (Ageratum houstonianum), blanket flower (Gaillardia pulchella), goldenrod (Solidago chapmanii), ‘Mystic Spires’ salvia (Salvia longispicata ×farinacea)]. Quality response to soil condition was mixed over the course of the study. Several species performed as well (or better) in the field as when planted in the subsoil fill soils. These results illustrate that some landscape plant species are able to survive and thrive under various soil and fertility conditions. These “tougher” species may be good choices for installation in landscapes with marginal native soils or disturbed urban landscape soils.

Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1529
Author(s):  
Ramón Gisbert-Mullor ◽  
Nuria Pascual-Seva ◽  
María Amparo Martínez-Gimeno ◽  
Lidia López-Serrano ◽  
Eduardo Badal Marín ◽  
...  

In this study, hybrid pepper rootstock NIBER® is tested for its ability to overcome water stress situations under soil conditions. The impact of deficit irrigation (DI) on yield and fruit quality, irrigation water use efficiency is evaluated, and consequently, the agronomic impact of employing water-stress tolerant rootstock is compared to ungrafted pepper plants. For this purpose, plants of the California-type sweet pepper ‘Maestral F1’ grafted onto NIBER® underwent a sustained DI regime during seasons 2018 and 2019 and were compared to their respective controls. Plants were drip-fertirrigated, and volumetric soil water content was continuously monitored by capacitance sensors. Gas exchange and leaf water potential measurements were taken early in the morning and midday 58, 79, and 114 days after transplanting. Plant and fruit dry biomass, marketable quality, blossom-end rot incidence and harvest index were also determined. For consecutive years, our results confirmed that grafting a pepper cultivar onto an appropriate rootstock (NIBER® in this case) as part of a DI strategy can overcome the negative effects of sustained water stress conditions. The plant biomass production and fruit yields of grafted plants were less affected by DI due to less sensitivity to water stress. This can be attributed to a less marked reduction in shoot dry weight in the grafted plants, which allowed greater whole photosynthesis by maintaining sink activity compared to ungrafted plants.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Ricksy Prematuri ◽  
Maman Turjaman ◽  
Takumi Sato ◽  
Keitaro Tawaraya

Opencast nickel mining is common in natural forests of Indonesia. However, rehabilitation of postmining degraded land is difficult. We investigated the effect of opencast nickel mining on soil chemical properties and the growth of two fast-growing tropical tree species, Falcataria moluccana and Albizia saman. Soil was collected from post-nickel mining land and a nearby natural forest. Soil pH, available phosphorus (P) concentration, total carbon (TC) and total nitrogen (TN) concentration, C/N ratio, cation exchange capacity (CEC), and exchangeable K, Na, Mg, Ca, Fe, and Ni concentrations were determined. Falcataria moluccana and A. saman were then grown in the collected soils for 15 weeks in a greenhouse. Shoot height and shoot and root dry weights of the seedlings were measured. The post--nickel mining soils TN, TC, available P, CEC, and exchangeable Ca and Na concentrations decreased by 98%, 93%, 11%, 62%, 85%, and 74%, respectively, in comparison with the natural forest soils. The pH of postmining soil was higher than natural forest soil. Shoot dry weight of F. moluccana seedlings grown in postmining soil was significantly ( P < 0.05 ) lower than that of seedlings grown in natural forest soil. However, there was no difference in shoot dry weight between A. saman seedlings grown in natural forest soil and postmining soil, as well as root dry weights of both species. The results indicate that opencast nickel mining decreased soil fertility, which subsequently inhibited the growth of F. moluccana and A. saman seedlings.


2018 ◽  
Vol 3 ◽  
pp. 30-39
Author(s):  
Sobia Baby Jamro ◽  
Naheed Akhtar Talpur ◽  
Mukesh Kumar Sootahar ◽  
Zial Ul Hassan Shah ◽  
Mahendar Kumar Sootahar ◽  
...  

A field experiment was conducted during summer 2016 to screen out sunflower (Helianthus annuusL.) genotypes for their potassium (K) use efficiency ratio. Eight sunflower genotypes were tested; Samsung 20, Mehran 2, Ho-1, Melabour, Samsung 30, Valugur, Chinika and Sputnik in randomised complete block design (RCBD) with the two treatments comprised of potassium at (50 and 0 kg K ha-1) along with source (SOP) recommended dose fertilizer respectively. The results revealed that the treated and control plots (50 and 0 kg K ha-1) produced different values for of seeds (1763.1 and 1588.5 head-1), shoot dry weight (23.0 and 19.11 g), head diameter (17.45 and 15.72 cm), seed yields (2065.8 and 1918.7 kg ha-1), seed K % (0.60 and 0.30%) and diagnostic tissue % (3.54 and 2.65%) respectively. The considerable increase was found in seeds head-1(10.99%), shoot dry weight (20.35%), head diameter (11.01%), seed yields (11.31%) seed K % (100%), and leaf K % (33.58%). Among genotypes, Ho-1 was highly efficient to utilize added K fertilizer more seed (2039.7 head-1), shoot dry weight (25.86 g), plant height (188.66 cm), head diameter (20.20 cm), seed yields (2409.5 kg hat-1). Moreover seed K % and leaf K % was also high in variety Ho_1 (0.65% and (5.05%) respectively. Among all the sunflower tested genotypes Ho-1 showed significant response applied K but the variety Ho-1 and genotype Chinika were more efficient in utilization of K.


HortScience ◽  
2007 ◽  
Vol 42 (2) ◽  
pp. 344-348 ◽  
Author(s):  
S.M. Scheiber ◽  
E.F. Gilman ◽  
M. Paz ◽  
K.A. Moore

Ilex cornuta Lindl. & Paxt. ‘Burfordii Nana’ (dwarf burford holly), Pittosporum tobira [Dryand]. ‘Variegata’ (pittosporum), and Viburnum odorotissimum Ker Gawl. (sweet viburnum) were transplanted into field plots in an open-sided, clear polyethylene-covered shelter to evaluate growth, aesthetic quality, and establishment rates in response to 2-, 4-, or 7-d irrigation frequencies. Establishment was delayed 1 to 2 months for I. cornuta ‘Burrford Nana’ irrigated every 7 d compared with 2- and 4-d frequencies; however, growth and aesthetic quality were similar among treatments. Plants irrigated every 7 d also had higher cumulative water stress levels. Leaf area, shoot dry weight, and total biomass increased among P. tobira ‘Variegata’ and V. odorotissimum irrigated every 2 d. Pittosporum tobira ‘Variegata’ and V. odorotissimum irrigated every 2 d also had greater canopy size and root dry weight, respectively. Neither cumulative water stress nor establishment was affected by irrigation frequency for either species.


Author(s):  
S. Nithila ◽  
R. Amutha ◽  
R. Sivakumar

Most of the pulses in India are grown in low fertility, problematic soils and unpredictable environmental conditions. Major issues in pulse production are poor establishment and low harvest index. In pulses harvest index is only 15-20%. Physiological manipulations such as spraying of hormones and nutrients that reduce flower drop and thereby facilitate large sink size. The objective of this research is to study the impact of Growth regulating substances on germination and establishment and economic yield of black gram and green gram under Sodic soil conditions. The study area is Anbil Dharmalingam Agricultural College and Research Institute, Trichy. The nature of soil is sodicity with exchangeable sodium percentage (ESP) of 18.94% with pH of 9.02. The two crop varieties green gram VBN (Gg) 2 & black gram VBN (Bg) 6 were employed under sodic soil condition. Field experiment was conducted during late July to October 2017 under sodic soil condition with ten treatments. The experiment was laid out in a Randamized Block Design with three replications. Foliar spray was given at flower initiation and pod initiation stages. Ten treatment combinations were employed by T1: Control, T2: Seed Treatment (ST) with Ammonium Molybdate (AM) 0.05% + foliar spray of ZnSO4 – 0.5%. T3: AM 0.05% + Panchagavya -3.0%,              T4: AM 0.05% + foliar spray of KCl -1%, T5: ST with GA3 50 ppm + foliar spray of ZnSO4 – 0.5%,   T6: GA3 50 ppm + Panchagavya -3.0%, T7: GA3 50 ppm + KCl -1%, T8: Cowpea Sprout Extract 2% +ZnSO4 – 0.5%, T9: Cowpea Sprout Extract 2% +Panchagavya -3.0%, T10: Cowpea Sprout Extract 2% + foliar spray of KCl -1%. In conclusion the yield enhancement in best treatment may be due to the presence of bioactive substances in sprouted cowpea extracts and panchagavya were found effective towards yield maximization.


2014 ◽  
Vol 6 (3) ◽  
pp. 298-302
Author(s):  
Thi Thu Ha Chu

Two plant species including Polygonum hydropiper L. and Hymenachne acutigluma (Steud.) Gilliland were investigated in their resistance to lead (Pb) and cadmium (Cd) pollution in the soil. Lead-contaminated soil samples were collected from the lead recycling village Dong Mai, Chi Dao commune, Van Lam district, Hung Yen province, Vietnam that had Pb level up to 192,185 mg.kg-1, dry weight (DW). Cadmium-contaminated soil samples were due to supplement of CdCl2.21/2H2O to alluvial soil. Results showed that both species were highly resistant to Pb, however P.hydropiper was better. Similarly, the Cd resistance was higher for P.hydropiper than for H.acutigluma. No morpho-abnormalities of P.hydropiper regarding the impact of lead were recorded, whereas for H.acutigluma, the young leaves had white colour after two months of planting in soil containing lead levels of 192,185 mg.kg-1. The response of both species with Cd in soils included yellowing leaves, withering branches and even dying after 5-15 days exposed to Cd. Lead contents accumulated in above-ground parts of both plants were up to 4,650 and 3,161 mg.kg-1, DW, corresponding to P.hydropiper and H.acutigluma. From the research results on lead resistance and accumulation of two plant species studied, it is suggested that the two species are lead hyperaccumulators can be used for phytoremediation technology to clean contaminated soil.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2269
Author(s):  
Widad Al Azzawi ◽  
Muhammad Bilal Gill ◽  
Foad Fatehi ◽  
Meixue Zhou ◽  
Tina Acuña ◽  
...  

Potassium deficiency is one of the major issues affecting crop production around the globe. Giving the high cost of potassium fertilizers and environmental concerns related to inappropriate fertilization practices, developing more potassium use efficient (KUE) varieties is critical for sustainable food production in agricultural systems. In this study, we analysed the impact of potassium availability on agronomical attributes of thirty barley genotypes grown at four different levels of potassium (0.002 mM, 0.02 mM, 2 mM, 20 mM) under glasshouse conditions. The results showed that the availability of potassium in the soil had a major effect on yield components i.e., spike number, grain number and grain weight. Furthermore, grain weight showed a strong correlation with grain number and spike number at all levels of potassium supply. Although an increase in potassium supply led to an increase in plant height in all genotypes, the correlation with grain weight was very weak at all levels. Potassium supplementation caused an increase in shoot dry weight, which also showed a weak correlation with grain weight at the 0.002 mM potassium supply level. The genotypes Gebeina, Skiff, YF374, Flagship and YF374 were highly efficient in performing at suboptimal K supply levels and, thus, can be recommended to be grown in K-impoverished soils. We also suggest that grain and spike numbers could be used as proxies for KUE studies, to construct DH lines and identify QTL to improve low potassium tolerance and KUE in barley.


2012 ◽  
pp. 61-72 ◽  
Author(s):  
Matilda Djukic ◽  
Danijela Djunisijevic-Bojovic ◽  
Mihailo Grbic ◽  
Dragana Skocajic ◽  
Dragica Obratov-Petkovic ◽  
...  

Relative amounts of nutrients, especially nitrogen, the most abundant macro-element, and also the distribution of ammonium ions in relation to nitrate ions, in the soils of different ecosystems, are determined by many factors. The most important are: temperature, pH of substrate, accumulation of organic matter, presence of allelopathic compounds, degree of oxygenation, etc. The ability of plants to adapt to these variations influences their production of bio-mass, the rate of expansion in different habitats, and the impact on ecosystem and biodiversity. This paper analyzes the impact of different forms of nitrogen (NO3 - and NH4 +) on the growth of seedlings of invasive species Acer negundo L. and Ailanthus altissima (Mill.) Swingle. The results show that nitrogen nutrition only in the form of NH4 + ions significantly affects the reduction in shoot dry weight. Compared to the nutrition with both forms of nitrogen together, aerial parts of Ailanthus altissima were reduced by 62.5%, and leaf area by 66.7%, while Acer negundo seedlings had reduction in dry mass of aboveground part by 89.5%, root by 81.2% and leaf area by 85.8%. Nutrition with nitrate form of nitrogen led to a proportionally small, but statistically significant decrease in dry mass of aboveground parts and roots as well as leaf area of Acer negundo, while in Ailanthus altissima seedlings, it was only the mass reduction of aboveground parts that was significantly influenced, so it can be assumed that this species is more resistant to the lack of both forms of nitrogen. The fact that both species produced significantly more biomass when nitrogen was present in both forms may be important in controlling the spread of alien species, or in their potential use in phytoremediation.


2013 ◽  
Vol 93 (1) ◽  
pp. 97-107 ◽  
Author(s):  
A. Rashid ◽  
S. F. Hwang ◽  
H. U. Ahmed ◽  
G. D. Turnbull ◽  
S. E. Strelkov ◽  
...  

Rashid, A., Hwang, S. F., Ahmed, H. U., Turnbull, G. D., Strelkov, S. E. and Gossen, B. D. 2013. Effects of soil-borne Rhizoctonia solani on canola seedlings after application of glyphosate herbicide. Can. J. Plant Sci. 93: 97–107. Application of glyphosate (N-phosphonomethyl glycine) prior to seeding is a common weed management practice in many agricultural systems. However, there are concerns that this practice may increase the impact of soil-borne diseases on the crop, even in cultivars that are resistant to glyphosate. In the current study, the effects of pre-plant applications of glyphosate on seedling blight of canola caused by Rhizoctonia solani and subsequent crop growth were examined under field and greenhouse conditions. Under greenhouse conditions in soil inoculated with R. solani, glyphosate application 15 d before seeding reduced seedling emergence, increased damping-off, and decreased plant height and shoot dry weight of canola relative to a glyphosate-free control. However, the adverse effects were substantially reduced when the crop was seeded 33 d after glyphosate application. This indicates that glyphosate application prior to planting may increase the impact of R. solani on canola seedlings, but that this effect diminishes quite rapidly. Soil populations of R. solani declined over the 33-d period regardless of glyphosate treatment. Glyphosate application 10 d before seeding increased seedling emergence and seed yield (1 of 2 yr) of canola in field trials inoculated with R. solani.


2004 ◽  
Vol 82 (1) ◽  
pp. 22-30 ◽  
Author(s):  
Diana Bizecki Robson ◽  
J Diane Knight ◽  
Richard E Farrell ◽  
James J Germida

One way to identify hydrocarbon-tolerant plant species for reclamation is to sample vegetation at contaminated sites allowed to recover naturally. We compared vegetation and soils of 14 hydrocarbon-contaminated plots in southern Saskatchewan to those of nearby uncontaminated plots to determine the impact on plant communities and soil properties. Contaminated plots had less vegetation and litter cover than uncontaminated plots, and significantly higher soil carbon to nitrogen ratios, pH, and hydrocarbon concentration, and lower nitrogen and phosphorus. Although species richness was not significantly different, Shannon's diversity was lower on contaminated plots. Mean compositional similarity of the plots, measured using Jaccard's index, was only 31%, and cover similarity, measured using Spatz's index, was only 22%. Vegetation composition differences occurred because mycorrhizal, woody and vegetatively reproducing species, and species using birds or unassisted means for seed dispersal were significantly less common on contaminated than uncontaminated plots. Self-pollinated species were significantly more common on contaminated plots. The most abundant species on contaminated soils were the annual forb Kochia scoparia and the native perennial grasses Hordeum jubatum, Distichlis stricta, Agropyron smithii, Agropyron trachycaulum, and Poa canbyi. This research shows that some plant species and functional groups are tolerant of the altered soil conditions at hydrocarbon-contaminated sites.Key words: functional groups, oil spills, phytoremediation, reclamation, succession, vegetation recovery.


Sign in / Sign up

Export Citation Format

Share Document