scholarly journals Genome-Wide Identification and Evolutionary Analysis of AOMT Gene Family in Pomegranate (Punica granatum)

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 318
Author(s):  
Xinhui Zhang ◽  
Weicheng Yuan ◽  
Yujie Zhao ◽  
Yuan Ren ◽  
Xueqing Zhao ◽  
...  

Gene duplication is the major resource with which to generate new genes, which provide raw material for novel functions evolution. Thus, to elucidate the gene family evolution after duplication events is of vital importance. Anthocyanin O-methyltransferases (AOMTs) have been recognized as being capable of anthocyanin methylation, which increases anthocyanin diversity and stability and improves the protection of plants from environmental stress. Meanwhile, no detailed identification or genome-wide analysis of the AOMT gene family members in pomegranate (Punicagranatum) have been reported. Three published pomegranate genome sequences offer substantial resources with which to explore gene evolution based on the whole genome. Altogether, 58 identified OMTs from pomegranate and five other species were divided into the AOMT group and the OMT group, according to their phylogenetic tree and AOMTs derived from OMTs. AOMTs in the same subclade have a similar gene structure and protein conserved motifs. The PgAOMT family evolved and expanded primarily via whole-genome duplication (WGD) and tandem duplication. PgAOMTs expression pattern in peel and aril development by qRT-PCR verification indicated that PgAOMTs had tissue-specific patterns. The main fates of AOMTs were neo- or non-functionalization after duplication events. High expression genes of PgOMT04 and PgOMT09 were speculated to contribute to “Taishanhong” pomegranate’s bright red peel color. Finally, we integrated the above analysis in order to infer the evolutionary scenario of AOMT family.

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 167
Author(s):  
Sara Sangi ◽  
Paula M. Araújo ◽  
Fernanda S. Coelho ◽  
Rajesh K. Gazara ◽  
Fabrício Almeida-Silva ◽  
...  

The COBRA-like (COBL) gene family has been associated with the regulation of cell wall expansion and cellulose deposition. COBL mutants result in reduced levels and disorganized deposition of cellulose causing defects in the cell wall and inhibiting plant development. In this study, we report the identification of 24 COBL genes (GmCOBL) in the soybean genome. Phylogenetic analysis revealed that the COBL proteins are divided into two groups, which differ by about 170 amino acids in the N-terminal region. The GmCOBL genes were heterogeneously distributed in 14 of the 20 soybean chromosomes. This study showed that segmental duplication has contributed significantly to the expansion of the COBL family in soybean during all Glycine-specific whole-genome duplication events. The expression profile revealed that the expression of the paralogous genes is highly variable between organs and tissues of the plant. Only 20% of the paralogous gene pairs showed similar expression patterns. The high expression levels of some GmCOBLs suggest they are likely essential for regulating cell expansion during the whole soybean life cycle. Our comprehensive overview of the COBL gene family in soybean provides useful information for further understanding the evolution and diversification of COBL genes in soybean.


2014 ◽  
Vol 112 (5) ◽  
pp. 1493-1498 ◽  
Author(s):  
Fabio Cortesi ◽  
Zuzana Musilová ◽  
Sara M. Stieb ◽  
Nathan S. Hart ◽  
Ulrike E. Siebeck ◽  
...  

Single-gene and whole-genome duplications are important evolutionary mechanisms that contribute to biological diversification by launching new genetic raw material. For example, the evolution of animal vision is tightly linked to the expansion of the opsin gene family encoding light-absorbing visual pigments. In teleost fishes, the most species-rich vertebrate group, opsins are particularly diverse and key to the successful colonization of habitats ranging from the bioluminescence-biased but basically dark deep sea to clear mountain streams. In this study, we report a previously unnoticed duplication of the violet-blue short wavelength-sensitive 2 (SWS2) opsin, which coincides with the radiation of highly diverse percomorph fishes, permitting us to reinterpret the evolution of this gene family. The inspection of close to 100 fish genomes revealed that, triggered by frequent gene conversion between duplicates, the evolutionary history of SWS2 is rather complex and difficult to predict. Coincidentally, we also report potential cases of gene resurrection in vertebrate opsins, whereby pseudogenized genes were found to convert with their functional paralogs. We then identify multiple novel amino acid substitutions that are likely to have contributed to the adaptive differentiation between SWS2 copies. Finally, using the dusky dottyback Pseudochromis fuscus, we show that the newly discovered SWS2A duplicates can contribute to visual adaptation in two ways: by gaining sensitivities to different wavelengths of light and by being differentially expressed between ontogenetic stages. Thus, our study highlights the importance of comparative approaches in gaining a comprehensive view of the dynamics underlying gene family evolution and ultimately, animal diversification.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lingling DOU ◽  
Limin LV ◽  
Yangyang KANG ◽  
Ruijie TIAN ◽  
Deqing HUANG ◽  
...  

Abstract Background Calmodulin (CaM) is one of the most important Ca2+ signaling receptors because it regulates diverse physiological and biochemical reactions in plants. CaM functions by interacting with CaM-binding proteins (CaMBPs) to modulate Ca2+ signaling. IQ domain (IQD) proteins are plant-specific CaMBPs that bind to CaM by their specific CaM binding sites. Results In this study, we identified 102 GhIQD genes in the Gossypium hirsutum L. genome. The GhIQD gene family was classified into four clusters (I, II, III, and IV), and we then mapped the GhIQD genes to the G. hirsutum L. chromosomes. Moreover, we found that 100 of the 102 GhIQD genes resulted from segmental duplication events, indicating that segmental duplication is the main force driving GhIQD gene expansion. Gene expression pattern analysis showed that a total of 89 GhIQD genes expressed in the elongation stage and second cell wall biosynthesis stage of the fiber cells, suggesting that GhIQD genes may contribute to fiber cell development in cotton. In addition, we found that 20 selected GhIQD genes were highly expressed in various tissues. Exogenous application of MeJA significantly enhanced the expression levels of GhIQD genes. Conclusions Our study shows that GhIQD genes are involved in fiber cell development in cotton and are also widely induced by MeJA. Thw results provide bases to systematically characterize the evolution and biological functions of GhIQD genes, as well as clues to breed better cotton varieties in the future.


Author(s):  
Yongxian Tian ◽  
Qigang Wang ◽  
Hao Zhang ◽  
Ningning Zhou ◽  
Huijun Yan ◽  
...  

2022 ◽  
Vol 23 (2) ◽  
pp. 614
Author(s):  
Weiqi Sun ◽  
Mengdi Li ◽  
Jianbo Wang

Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are suitable for studying the problems associated with polyploidization. As an important anti-stress protein, RCI2 proteins widely exist in various tissues of plants, and are crucial to plant growth, development, and stress response. In this study, the RCI2 gene family was comprehensively identified and analyzed, and 9, 9, and 24 RCI2 genes were identified in B. rapa, B. oleracea, and B. napus, respectively. Phylogenetic analysis showed that all of the identified RCI2 genes were divided into two groups, and further divided into three subgroups. Ka/Ks analysis showed that most of the identified RCI2 genes underwent a purifying selection after the duplication events. Moreover, gene structure analysis showed that the structure of RCI2 genes is largely conserved during polyploidization. The promoters of the RCI2 genes in B. napus contained more cis-acting elements, which were mainly involved in plant development and growth, plant hormone response, and stress responses. Thus, B. napus might have potential advantages in some biological aspects. In addition, the changes of RCI2 genes during polyploidization were also discussed from the aspects of gene number, gene structure, gene relative location, and gene expression, which can provide reference for future polyploidization analysis.


2020 ◽  
Vol 21 (18) ◽  
pp. 6608
Author(s):  
Krishna Poudel ◽  
Xiang Luo ◽  
Lina Chen ◽  
Dan Jing ◽  
Xiaocong Xia ◽  
...  

Sucrose, an important sugar, is transported from source to sink tissues through the phloem, and plays important role in the development of important traits in plants. However, the SUT gene family is still not well characterized in pomegranate. In this study, we first identified the pomegranate sucrose transporter (SUT) gene family from the whole genome. Then, the phylogenetic relationship of SUT genes, gene structure and their promoters were analyzed. Additionally, their expression patterns were detected during the development of the seed. Lastly, genetic transformation and cytological observation were used to study the function of PgL0145810.1. A total of ten pomegranate SUT genes were identified from the whole genome of pomegranate ‘Tunisia’. The promoter region of all the pomegranate SUT genes contained myeloblastosis (MYB) elements. Four of the SUT genes, PgL0328370.1, PgL0099690.1, PgL0145810.1 and PgL0145770.1, were differentially expressed during seed development. We further noticed that PgL0145810.1 was expressed most prominently in the stem parts in transgenic plants compared to other tissue parts (leaves, flowers and silique). The cells in the xylem vessels were small and lignin content was lower in the transgenic plants as compared to wild Arabidopsis plants. In general, our result suggests that the MYB cis-elements in the promoter region might regulate PgL0145810.1 expression to control the structure of xylem, thereby affecting seed hardness in pomegranate.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Raphaëlle Dubruille ◽  
Gabriel A. B. Marais ◽  
Benjamin Loppin

Comparative genome analysis has allowed the identification of various mechanisms involved in gene birth. However, understanding the evolutionary forces driving new gene origination still represents a major challenge. In particular, an intriguing and not yet fully understood trend has emerged from the study of new genes: many of them show a testis-specific expression pattern, which has remained poorly understood. Here we review the case of such a new gene, which involves a telomere-capping gene family in Drosophila. hiphop and its testis-specific paralog K81 are critical for the protection of chromosome ends in somatic cells and male gametes, respectively. Two independent functional studies recently proposed that these genes evolved under a reproductive-subfunctionalization regime. The 2011 release of new Drosophila genome sequences from the melanogaster group of species allowed us to deepen our phylogenetic analysis of the hiphop/K81 family. This work reveals an unsuspected dynamic of gene birth and death within the group, with recurrent duplication events through retroposition mechanisms. Finally, we discuss the plausibility of different evolutionary scenarios that could explain the diversification of this gene family.


2016 ◽  
Vol 17 (7) ◽  
pp. 1004 ◽  
Author(s):  
Wei Xu ◽  
Zexi Chen ◽  
Naeem Ahmed ◽  
Bing Han ◽  
Qinghua Cui ◽  
...  

2018 ◽  
Author(s):  
Guodong Chen ◽  
Xiaolong Li ◽  
Xin qiao ◽  
Jiaming Li ◽  
Li Wang ◽  
...  

AbstractS-type anion channels (SLAC/SLAHs), which play important roles in plant anion (such as nitrate and chloride) transport, growth and development, abiotic stress responses and hormone signaling. However, there is far less information about this family in Rosaceae species. We performed a genome-wide analysis and identified SLAC/SLAH gene family members in pear (Pyrus bretschneideri) and four other species of Rosaceae (Malus domestica, Prunus persica, Fragaria vesca and Prunus mume). A total of 21 SLAC/SLAH genes were identified from the five Rosaceae species. Based on the structural characteristics and a phylogenetic analysis of these genes, the SLAC/SLAH gene family could be classified into three main groups (I, II and III). The evolutionary analysis showed that the SLAC/SLAH gene family was comparatively conserved during the evolution of Rosaceae species. Transcriptome data demonstrated that PbrSLAC/SLAH genes were detected in all parts of the pear. However, PbrSLAC1 showed a higher expression level in leaf, while PbrSLAH2/3 was mainly expressed in roots. In addition, PbrSLAC/SLAH genes were only located on the plasma membrane in transient expression experiments in Arabidopsis protoplasts cells. These results provide valuable information that increases our understanding of the evolution, expression and functions of the SLAC/SLAH gene family in higher plants.


Sign in / Sign up

Export Citation Format

Share Document