scholarly journals Urban Organic Waste for Urban Farming: Growing Lettuce Using Vermicompost and Thermophilic Compost

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1175
Author(s):  
Corinna Schröder ◽  
Franziska Häfner ◽  
Oliver Christopher Larsen ◽  
Ariane Krause

A transformation towards sustainable food production requires improved circular nutrient management. Urban organic waste contains relevant nutrients and organic matter, yet only 4% of global urban nitrogen (N) and phosphorus (P) sources are presently recycled. One recycling approach is the composting of urban wastes for urban horticulture. We characterized compost from various urban waste fractions and assessed their fertilizer value in a pot trial with lettuce plants. Seven treatments were investigated: food waste vermicompost with coir and paperboard bedding material, thermophilic compost from green waste and human feces, two references with mineral fertilization and a sand control. The lettuce yield and total uptake of P, potassium (K), calcium (Ca), and magnesium (Mg) were highest in plants grown in coir-based vermicompost. The fecal compost led to the highest shoot P and K content, but the shoot uptake of Ca and Mg were lower than in the other treatments. All composts required additional N for lettuce growth. In conclusion, urban waste-derived vermicompost and fecal compost demonstrate a high delivery rate of plant-available Ca, Mg, P, and K. Research is needed on macronutrient availability and alternative N sources for the substitution of synthetic fertilization. These findings support the production of urban waste composts, furthering efforts in nutrient recycling.

2019 ◽  
Vol 13 (2) ◽  
pp. 237-247
Author(s):  
Rúbia Rejane Ribeiro ◽  
Jose Luiz Rodrigues Torres ◽  
Valdeci Orioli-Junior ◽  
Hamilton Cesar De Oliveira Charlo ◽  
Dinamar Márcia Da Silva Vieira

The objective of this study was to evaluate the influence of different sources and doses of organic and mineral fertilization on the production of green-leaf lettuce. The experiment design used randomized blocks in a factorial scheme (6×3), with six doses of fertilizers (1 = 0; 2 = 25; 3 = 50; 4 = 100; 5 = 150, and 6 = 200% of the recommended fertilization for green-leaf lettuce crop) and three sources of fertilizers [cattle manure (CaM) and chicken manure (ChM), decomposed, on a wet basis and applied 100% at planting at the doses: CaM – 0, 12.5, 25, 50, 75, 100 Mg ha-1; ChM – 0, 5, 10, 20, 30, 40 Mg ha-1; mineral fertilization (MF) varying the N levels: 0, 37.5, 75, 150, 225, 300 kg ha-1 plus 400 kg ha-1 of P2O5 and 60 kg ha-1 of K2O]. The fertilization with CaM and ChM was more efficient than the MF at increasing the production of green-leaf lettuce, mainly because of  the higher residual effects of P in the Oxisol. The ChM provided a higher soil pH, P and K, while the CaM provided a higher soil Mg, organic carbon and organic matter. The dose with 144% of organic fertilization exclusively on a wet basis corresponding to 72 Mg ha-1 of CaM and 29 Mg ha-1 of ChM resulted in the highest green-leaf lettuce yield.


2020 ◽  
Vol 12 (12) ◽  
pp. 4920
Author(s):  
Kiyonori Kawasaki ◽  
Toshiya Kawasaki ◽  
Hirofumi Hirayasu ◽  
Yoshiki Matsumoto ◽  
Yasuhiro Fujitani

The residue generated by the black soldier fly (Hermetia illucens, BSF) during the processing of organic waste is considered a suitable crop fertilizer. However, no detailed studies have investigated the fertilizer value of the residue obtained from processing household organic waste. In this study, experimental household organic waste (EHOW) was processed by BSF at 200 mg of EHOW per head for 15 days at 27 °C. To evaluate the fertilizer value of the obtained BSF larvae production residue (BSFR), the chemical composition and microbiota were analyzed, and Komatsuna (Brassica rapa var. perviridis) cultivation tests were conducted. BSFR results demonstrated higher ammonium nitrogen and lower nitrate nitrogen, and the highest above-ground dry matter weight of Komatsuna. Although the relative abundance of Escherichia was low, the relative abundance of Xanthomonadaceae, which contains a genus that causes disease in plants, was high. Therefore, the presence of plant pathogens in the BSFR microbiota should be considered. Finally, the effects of BSFR on the external environment requires more detailed investigation.


Horticulturae ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 43
Author(s):  
Ignasi Riera-Vila ◽  
Neil O. Anderson ◽  
Claire Flavin Hodge ◽  
Mary Rogers

Urban agriculture, due to its location, can play a key role in recycling urban waste streams, promoting nutrient recycling, and increasing sustainability of food systems. This research investigated the integration of brewery wastewater treatment through anaerobic digestion with substrate-based soilless agriculture. An experiment was conducted to study the performance of three different crops (mustard greens (Brassica juncea), basil (Ocimum basilicum), and lettuce (Lactuca sativa) grown with digested and raw brewery wastewater as fertilizer treatments. Mustard greens and lettuce grown in digested wastewater produced similar yields as the inorganic fertilizer control treatment, while basil had slightly lower yields. In all cases, crops in the digested wastewater treatments produced higher yields than raw wastewater or the no fertilizer control, indicating that nutrients in the brewery wastewater can be recovered for food production and diverted from typical urban waste treatment facilities.


2018 ◽  
Vol 11 (2) ◽  
pp. 58-64
Author(s):  
Jailson Marques Da Silva ◽  
Nayana De Figueiredo Pereira ◽  
David David Vilas Boas de Campos ◽  
Antônio Orlando Izolani ◽  
Vinícius Marins Carraro ◽  
...  

Organic waste accounts for half of the urban waste generated inBrazil, 30% of which originates from fruit. In the search for new alternatives to reuse this biomass, the present study evaluated ethanol production from banana, apple, orange and papaya biomasses generated in commercial establishments in the city ofVassouras/RJ. The distilled products from the fruit biomass fermentation process were characterized regarding volatile compounds, acetaldehyde, acetone, ethyl acetate, ethanol, methanol, higher alcohols, isopropanol and isoamylic. The results indicate promising alcohol content according to the literature.


Author(s):  
Massimo Zaccardelli ◽  
Catello Pane ◽  
Ida Di Mola ◽  
Domenico Ronga ◽  
Mauro Mori

Highlights - Municipal solid organic waste compost (MSWC) integrated with N fertilizers can sustain vegetable production. - MSWC (at least 30 t ha-1 d.w.) replaced synthetic fertilizers for tomato and eggplant productions. - N fertilizer integration to the compost residual effect is necessary to sustain endive and broccoli productions. - MSWC (at 15 t ha-1 d.w.) needs 25% of N integration to reduce the gap with plant only fertilized with N fertilizer. - MSWC preserved soil quality and avoided accumulation of undesired metals, such as Cu and Zn.   Municipal waste compost was evaluated under open field conditions for replacing synthetic fertilizers in a vegetable three-year succession. Three compost rates, 45 t ha-1, 30 t ha-1 and 15 t ha-1 (dry matter), and compost at 15 t ha-1combined with 25%, and 50% of the full synthetic nitrogen rate, were compared to full and none synthetic nitrogen fertilizations. Crop succession was: tomato followed by endive in the first year; eggplant and, then, broccoli in the second year; tomato and, then, endive/broccoli, in the third year. The application of compost at a dose of at least 30 t ha-1 or at 15 t ha-1 with the addition of 25% of the full synthetic nitrogen rate, in Spring-Summer cycle, sustained growth and yield at levels comparable with those of synthetic nitrogen fertilization. However, only a very poor residual effect of the compost soil treatment on the yield of Autumn-Winter crops, was observed. Monitoring of nitrate content into the soil during cropping seasons, a reduction of the risk of groundwater pollution was displayed due to nitrates released by compost, respect to synthetic nitrogen fertilizer. The cumulative effects of compost application on soil properties were detected at the end of the field trials, registering changes in chemical parameters analyzed, except for phosphorus and boron.


2017 ◽  
Vol 47 (2) ◽  
pp. 186-194 ◽  
Author(s):  
José Ricardo Mantovani ◽  
Fernando Spadon

ABSTRACT Urban waste compost has a potential to be used as an organic fertilizer in agriculture, but field studies are required to define the recommendable rates for crops. This study aimed at evaluating the effect of fertilization with urban waste compost on the soil chemical properties, yield, nutrient and heavy metal contents, in maize leaves and grains. The field experiment was carried out in a randomized complete block design, with seven treatments and four replications. The treatments consisted of six urban waste compost doses (0 Mg ha-1, 5 Mg ha-1, 10 Mg ha-1, 20 Mg ha-1, 30 Mg ha-1 and 40 Mg ha-1), applied in the planting furrow, plus an additional control treatment, with NPK mineral fertilization and no waste compost application. Fertilization with up to 40 Mg ha-1 of urban waste compost improves soil fertility. Fertilization with urban waste compost increases grain yield and the N, P and K contents in leaf tissue and maize grains, without inducing plant contamination with heavy metals. The application of 30 Mg ha-1 of urban waste compost can replace mineral fertilization in maize cultivation.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Sylvia I. Murunga ◽  
Eliud N. Wafula ◽  
Joseph Sang

Opportunities for sustainable agriculture development in Kenya which heavily depends on healthy soil and soil microbial diversity can be found in the promotion of organic farming. The increasing populations, higher demands for animal and plant products, climate change impacts, and weather conditions necessitate novel ideas and technologies to try reverse the adverse effects of excessive use of inorganic fertilizers and to maximize the potential of the land. Sapropel, a promising biological deposit from freshwater lakes, has found its limelight in its use in agricultural crop production as a soil conditioner and biofertilizer. This could be an ultimate practice for sustainable food and energy production in Kenya. This review aims at presenting information in the literature about the potential use of the organic fertilizer based on sapropels in intensified crop production and their main effects on plant growth. It discusses soil fertility, the composition of sapropels, and their application and advantages in agricultural production. It is evident from the review that sapropel can be considered as a resource that is valuable with wide application possibilities in agriculture. Sapropel can present an important contribution to the solution of the conservation of the fertility of the soil for integrated nutrient management systems to maintain agricultural productivity and help in environmental conservation.


2019 ◽  
Vol 11 (24) ◽  
pp. 7101 ◽  
Author(s):  
Surendra K Pradhan ◽  
Olufunke Cofie ◽  
Josiane Nikiema ◽  
Helvi Heinonen-Tanski

Fecal sludge (FS) contains a significant amount of plant nutrients. FS (treated/untreated) has been used as soil ameliorant in several countries. Use of FS-based compost on lettuce may meet reservations due to possible microbiological contamination. The objectives of this research are: (1) To determine the fertilizer value of different formulations of sawdust and fecal sludge compost (SDFS) pellets, and (2) to compare the effect of these SDFS formulations with poultry manure, commercial compost, mineral fertilizer, and non-fertilization on lettuce cultivation. The SDFS products were made by enriching, and pelletized with ammonium sulphate, mineral-NPK, or ammonium sulphate + muriate of potash + triple superphosphate. Lettuce was cultivated in a greenhouse and an open field. The result showed that the saleable fresh weight lettuce yield obtained from all SDFS pellets with/without enrichments were higher than those obtained from commercial compost, poultry manure, mineral fertilizer, or no fertilizer. Cultivation in the open field gave higher yields than those in the greenhouse. No helminth eggs were detected in composts or lettuces. Some fecal coliforms were detected in lettuces fertilized with almost all fertilizers tested, including NPK and non-fertilized control. A properly treated fecal sludge-based fertilizer can be a sustainable solution for lettuce production, which helps urban and peri-urban agriculture.


Sign in / Sign up

Export Citation Format

Share Document