scholarly journals Development of Novel Blackgram (Vigna mungo (L.) Hepper) Mutants and Deciphering Genotype × Environment Interaction for Yield-Related Traits of Mutants

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1287
Author(s):  
Manickam Dhasarathan ◽  
Seshadri Geetha ◽  
Adhimoolam Karthikeyan ◽  
Datchinamoorthy Sassikumar ◽  
Narayanapillai Meenakshiganesan

Blackgram (Vigna mungo (L.) Hepper) yields are noticeably poor due to a shortage of improved varieties and an aggravated narrow genetic base. An attempt was made to isolate novel blackgram mutants by selecting for yield-related traits derived through gamma irradiation and testing the mutant genotype’s stability across the different environments. The irradiated blackgram populations M1-M5 were established in the background of cultivars ADT 3, Co 6, and TU 17-9. Desirable mutants were selected from M3 to M5 generations. It was observed in M2 and M3 that gamma rays showed higher mutagenic efficacy and generated good inherited variance for the yield-related traits. M4 established three divergent groups in each blackgram cultivar revealed by clustering analysis. The number of pods per plant, number of clusters per plant, and number of pods per cluster showed a strong direct association with single plant yield and could be considered as selection traits. G × E interactions were higher than the variation due to genotype for single plant yield. Limited environmental interaction was observed for the genotypes G24, G16, G36, G30, and G17, as revealed by AMMI, and the genotypes G18 and G29, as revealed by GGE. GGE biplot revealed the environment-specific genotypes G13 for E1 (Aduthurai), G7 for E2 (Kattuthottam), and G34 for E3 (Vamban) and also portrayed the highly discriminating (E3) and representative (E2) environments. Selected novel blackgram genotypes from this research are useful genetic stocks for genetic improvement and breeding.

2020 ◽  
Vol 2 ◽  
Author(s):  
Santhi Madhavan Samyuktha ◽  
Devarajan Malarvizhi ◽  
Adhimoolam Karthikeyan ◽  
Manickam Dhasarathan ◽  
Arumugam Thanga Hemavathy ◽  
...  

In the present study, fifty-two mungbean (Vigna radiata) genotypes were evaluated for seven morphological traits at three different environments in South Indian state Tamil Nadu, namely Virinjipuram (E1), Eachangkottai (E2), and Bhavanisagar (E3) during Kharif 2017, 2018, and 2019, respectively. The data collected were subjected to variability and correlation analyses, followed by stability analysis using additive main effects and multiplicative interaction (AMMI) model, genotype and genotype × environment interaction effects (GGE) biplot. Variablility was observed among the genotypes for the following traits viz., plant height, days to fifty per cent flowering, number of pods per plant, pod length, number of seeds per pod, hundred seed weight and grain yield. Correlation analysis showed that the trait number of pods per plant was significantly associated with grain yield. The G × E was smaller than the genetic variation of grain yield as it portrayed the maximum contribution of genotypic effects (61.07%). GGE biplot showed E3 as a highly discriminating and representative environment. It also identified environment-specific genotypes viz., EC 396111 for E1, EC 396125 for E2 and EC 396101 for E3 environments. The genotypes with minimum genotype stability index (GSI) viz., V2802BG (7), HG 22 (13), and EC 396098 (13) were observed with wide adaptation and high yields across all the three environments. In summary, we identified stable genotypes adapted across environments for grain yield. These genotypes can be used as parent/pre-breeding materials in future mungbean breeding programs.


2021 ◽  
pp. 1-13
Author(s):  
Aliya Momotaz ◽  
Per H. McCord ◽  
R. Wayne Davidson ◽  
Duli Zhao ◽  
Miguel Baltazar ◽  
...  

Summary The experiment was carried out in three crop cycles as plant cane, first ratoon, and second ratoon at five locations on Florida muck soils (histosols) to evaluate the genotypes, test locations, and identify the superior and stable sugarcane genotypes. There were 13 sugarcane genotypes along with three commercial cultivars as checks included in this study. Five locations were considered as environments to analyze genotype-by-environment interaction (GEI) in 13 genotypes in three crop cycles. The sugarcane genotypes were planted in a randomized complete block design with six replications at each location. Performance was measured by the traits of sucrose yield tons per hectare (SY) and commercial recoverable sugar (CRS) in kilograms of sugar per ton of cane. The data were subjected to genotype main effects and genotype × environment interaction (GGE) analyses. The results showed significant effects for genotype (G), locations (E), and G × E (genotype × environment interaction) with respect to both traits. The GGE biplot analysis showed that the sugarcane genotype CP 12-1417 was high yielding and stable in terms of sucrose yield. The most discriminating and non-representative locations were Knight Farm (KN) for both SY and CRS. For sucrose yield only, the most discriminating and non-representative locations were Knight Farm (KN), Duda and Sons, Inc. USSC, Area 5 (A5), and Okeelanta (OK).


2021 ◽  
Vol 81 (01) ◽  
pp. 63-73
Author(s):  
M. V. Nagesh Kumar ◽  
V. Ramya ◽  
C. V. Sameer Kumar ◽  
T. Raju ◽  
N. M. Sunil Kumar ◽  
...  

Pigeonpea [Cajanus cajan (L.) Millspaugh] is an important pulse crop grown under Indian rainfed agriculture. Twenty eight pigeonpea genotypes were tested for stability and adaptability across ten rainfed locations in the States of Telangana and Karnataka, India using AMMI (additive main effects and multiplicative interaction) model and GGE (genotype and genotype by environment) biplot method. The grain yields were significantly affected by environment (56.8%) followed by genotype × environment interaction (27.6%) and genotype (18.6%) variances. Two mega environments were identified with several winning genotypes viz., ICPH 2740 (G15), TS 3R (G10), PRG 176 (G8) and ICPL 96058 (G22). E2 (Gulbarga, Karnataka), E3 (Bidar, Karnataka) and E6 (Vikarabad, Telangana) were the most discriminating environments. Genotypes, ICPH 2740, PRG 176 and TS 3R were the best cultivars in all the environments whereas PRG 158 (G9), ICPL 87119 (G12), ICPL 20098 (G19) and ICPL 96058 (G22) were suitable across a wide range of environments. Genotypes, ICPH 2740 and PRG 176 can be recommended on a large scale to the farmers with small holdings to enhance pigeonpea productivity and improve the food security


2020 ◽  
Vol 49 (3) ◽  
pp. 425-435
Author(s):  
BM Dushyantha Kumar ◽  
AP Purushottam ◽  
P Raghavendra ◽  
T Vittal ◽  
KN Shubha ◽  
...  

Effects of genotype, environment and their interaction for grain yield and yield attributing characters in 20 advanced breeding lines of rice across six environments was investigated. Yield stability and adaptability of yield performance were analyzed by Eberhart and Russel model and (GGE) bi-plot. The AMMI analysis of variance indicated that mean squares due to genotypes, location and genotype location contributed per cent 59.08, 5.79 and 21.63, respectively for total variability in grain yield per hectare. Estimates of GGE bi-plot revealed that the lines G1, G3, G11, G13, G15, G12, G16, G7 and G10 were positioned near GGL bi-plot origin indicating wider adaptation for the trait grain yield per hectare. Eberhart and Russel Model and GGE biplot model showed the advanced breeding lines viz., JB 1-11-7 (G1) and JA 6-2 (G15) exhibited wider adaptability across the tested environments for number of productive tillers per plant and yield per hectare.


2021 ◽  
Vol 108 (december) ◽  
Author(s):  
Manju Devi S ◽  
◽  
Jayamani P ◽  
Kumar M ◽  
◽  
...  

The present study was carried out using 189 pre-breeding lines from the cross VBN (Bg) 5 and Vigna mungo var silvestris 22/10 to study the genetic variability for nine yields and six seed traits. Significant variability was observed for all the traits studied. The phenotypic coefficient of variation (PCV) was higher than the genotypic coefficient of variation (GCV) for all the 15 traits. High PCV was observed for number of pods per plant, seed volume, and single plant yield. The moderate to high GCV was exhibited for hundred seed weight, plant height, number of pods per plant, seed volume, and single plant yield. The heritability estimates were high for pod length, plant height, seed length, hundred seed weight, single plant yield, bulk density, seed length-width ratio and seed width. The traits viz., plant height, hundred seed weight, and single plant yield showed high heritability along with high genetic advance as per cent of mean respectively, which might be due to additive gene action. Hence, these traits could act as a better source for the breeding programme for evolving high-yielding bold seeded varieties.


Author(s):  
P. Jagan Mohan Rao ◽  
N. Sandhyakishore ◽  
S. Sandeep ◽  
G. Neelima ◽  
A. Saritha ◽  
...  

Background: The genotype × environment interaction greatly influences the success of breeding and in multi-location trials complicates the identification of superior genotypes for a single location, due to magnitude of genotype by location interaction are often greater than genotype by year interaction. This necessitates genotype evaluation in multi environments trials in the advanced stages of selection. Methods: Nine elite pigeonpea genotypes of mid-early duration were evaluated in six diverse locations in randomized complete block design with three replications during kharif, 2019 to ascertain the stable genotypes, environments discrimination and genotype by environment crossovers using AMMI and GGE biplot stability models. Result: The results in the present investigation revealed that first two principal components explained 73.4% of variation interaction, while, 80.50% in GGE biplot. Both the models identified WRGE-126 (G6) as stable performer with high yield (1733 kg ha-1) and among the locations Tandur (E1) measured as the ideal environment. Whereas, the environments, Adilabad (E3) and Warangal (E4) were observed representative with better discriminating ability.


2020 ◽  
Vol 8 (7) ◽  
pp. 3327-3334
Author(s):  
Isa Ansarifard ◽  
Khodadad Mostafavi ◽  
Mahmood Khosroshahli ◽  
Mohammad Reza Bihamta ◽  
Hosein Ramshini

Sign in / Sign up

Export Citation Format

Share Document