scholarly journals Impact of Long-Term Manure and Sewage Sludge Application to Soil as Organic Fertilizer on the Incidence of Pathogenic Microorganisms and Antibiotic Resistance Genes

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1423
Author(s):  
Hana Stiborova ◽  
Martina Kracmarova ◽  
Tereza Vesela ◽  
Marta Biesiekierska ◽  
Jindrich Cerny ◽  
...  

The reuse of stabilized (under thermophilic conditions) sewage sludge and manure on agricultural soils is a common practice. The aim of this study was to evaluate the risks associated with their repeated applications on the spread of pathogenic bacteria and antibiotic resistance genes (ARGs) that encode resistance to tetracycline (tetA and tetW), sulphonamide (sul1 and sul2), erythromycin (ermB), vancomycin (vanA) and integron genetic element (intI1). The trial fields has been regularly fertilized every 3rd year since 1996 with manure (MF; 330 kg N/ha) and sewage sludge (SF; 330 kg N/ha and SF3; 990 kg N/ha). Unfertilized soil (CF) served as a control. Samples were collected at different time points: (i) right before fertilization (which was also 3 years after the last fertilization), (ii) 5 months after fertilization, and (iii) 11 months after fertilization. The relative abundance of amplicon sequence variants (ASVs) assigned to potentially pathogenic bacteria was low (0.3% and 0.25% in sludge and manure, respectively), and no association with the application of these fertilizers was found. On the other hand, our data indicate that an increased relative abundance of the ARGs sul1 and tetW was significantly associated with these fertilizer applications, and sul1 was increased in all treatments regardless of the time. It is suggested that sul1 should be monitored in organically fertilized soils to prevent its spread and possible further accumulation in crops.

2021 ◽  
Vol 12 ◽  
Author(s):  
Leire Jauregi ◽  
Lur Epelde ◽  
Itziar Alkorta ◽  
Carlos Garbisu

The application of sewage sludge (SS) to agricultural soil can help meet crop nutrient requirements and enhance soil properties, while reusing an organic by-product. However, SS can be a source of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), resulting in an increased risk of antibiotic resistance dissemination. We studied the effect of the application of thermally-dried anaerobically-digested SS on (i) soil physicochemical and microbial properties, and (ii) the relative abundance of 85 ARGs and 10 MGE-genes in soil. Soil samples were taken from a variety of SS-amended agricultural fields differing in three factors: dose of application, dosage of application, and elapsed time after the last application. The relative abundance of both ARGs and MGE-genes was higher in SS-amended soils, compared to non-amended soils, particularly in those with a more recent SS application. Some physicochemical parameters (i.e., cation exchange capacity, copper concentration, phosphorus content) were positively correlated with the relative abundance of ARGs and MGE-genes. Sewage sludge application was the key factor to explain the distribution pattern of ARGs and MGE-genes. The 30 most abundant families within the soil prokaryotic community accounted for 66% of the total variation of ARG and MGE-gene relative abundances. Soil prokaryotic α-diversity was negatively correlated with the relative abundance of ARGs and MGE-genes. We concluded that agricultural soils amended with thermally-dried anaerobically-digested sewage sludge showed increased risk of antibiotic resistance dissemination.


2020 ◽  
Author(s):  
Yan Xu ◽  
Houyu Li ◽  
Rongguang Shi ◽  
Jiapei Lv ◽  
Bihan Li ◽  
...  

Abstract Background: The prevalence of antibiotic resistance genes (ARGs) in animal manure poses threats to the environmental safety. Organic fertilizers fermented by livestock and poultry manure are directly applied to farmland, which would cause the potential outbreak of bacterial resistance in agricultural environment. This study investigated the composition of ARGs in different animal manure and their derived organic fertilizers. Results: Results showed that the abundance of several ARGs, such as sul 2, Tet B-01, Tet G-01 and Tet M-01 in organic fertilizer samples was 12%~96% lower than in animal manure. However, there was an increasing of Tet K and erm C abundance from animal manure to the organic fertilizers. No correlation between ARGs and environmental factors such as pH, TN, antibiotics was observed by Redundancy analysis (RDA). Procrustes analysis revealed the significant correlation between bacterial community structures and the ARGs abundance (r=0.799, p<0.01). Non-metric multidimensional scaling (NMDS) analysis suggested that microorganisms in organic fertilizer may be derived from animal manure. Additional, pathogenic bacteria (especially Actinomadura ) would proliferate rather than decrease from manure to organic fertilizer. Conclusion: Overall, this research suggests that the composting treatment of manure could effectively reduce these ARGs and pathogens,even cause partial ARGs and pathogens proliferation. It also shows that the microorganism might significantly influence ARGs profiles in composting.


2014 ◽  
Vol 80 (22) ◽  
pp. 6898-6907 ◽  
Author(s):  
Teddie O. Rahube ◽  
Romain Marti ◽  
Andrew Scott ◽  
Yuan-Ching Tien ◽  
Roger Murray ◽  
...  

ABSTRACTThe consumption of crops fertilized with human waste represents a potential route of exposure to antibiotic-resistant fecal bacteria. The present study evaluated the abundance of bacteria and antibiotic resistance genes by using both culture-dependent and molecular methods. Various vegetables (lettuce, carrots, radish, and tomatoes) were sown into field plots fertilized inorganically or with class B biosolids or untreated municipal sewage sludge and harvested when of marketable quality. Analysis of viable pathogenic bacteria or antibiotic-resistant coliform bacteria by plate counts did not reveal significant treatment effects of fertilization with class B biosolids or untreated sewage sludge on the vegetables. Numerous targeted genes associated with antibiotic resistance and mobile genetic elements were detected by PCR in soil and on vegetables at harvest from plots that received no organic amendment. However, in the season of application, vegetables harvested from plots treated with either material carried gene targets not detected in the absence of amendment. Several gene targets evaluated by using quantitative PCR (qPCR) were considerably more abundant on vegetables harvested from sewage sludge-treated plots than on vegetables from control plots in the season of application, whereas vegetables harvested the following year revealed no treatment effect. Overall, the results of the present study suggest that producing vegetable crops in ground fertilized with human waste without appropriate delay or pretreatment will result in an additional burden of antibiotic resistance genes on harvested crops. Managing human exposure to antibiotic resistance genes carried in human waste must be undertaken through judicious agricultural practice.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0237283
Author(s):  
Sky Redhead ◽  
Jeroen Nieuwland ◽  
Sandra Esteves ◽  
Do-Hoon Lee ◽  
Dae-Wi Kim ◽  
...  

Antibiotic resistant bacteria (ARB) and their genes (ARGs) have become recognised as significant emerging environmental pollutants. ARB and ARGs in sewage sludge can be transmitted back to humans via the food chain when sludge is recycled to agricultural land, making sludge treatment key to control the release of ARB and ARGs to the environment. This study investigated the fate of antibiotic resistant Escherichia coli and a large set of antibiotic resistance genes (ARGs) during full scale anaerobic digestion (AD) of sewage sludge at two U.K. wastewater treatment plants and evaluated the impact of thermal hydrolysis (TH) pre-treatment on their abundance and diversity. Absolute abundance of 13 ARGs and the Class I integron gene intI1 was calculated using single gene quantitative (q) PCR. High through-put qPCR analysis was also used to determine the relative abundance of 370 ARGs and mobile genetic elements (MGEs). Results revealed that TH reduced the absolute abundance of all ARGs tested and intI1 by 10–12,000 fold. After subsequent AD, a rebound effect was seen in many ARGs. The fate of ARGs during AD without pre-treatment was variable. Relative abundance of most ARGs and MGEs decreased or fluctuated, with the exception of macrolide resistance genes, which were enriched at both plants, and tetracyline and glycopeptide resistance genes which were enriched in the plant employing TH. Diversity of ARGs and MGEs decreased in both plants during sludge treatment. Principal coordinates analysis revealed that ARGs are clearly distinguished according to treatment step, whereas MGEs in digested sludge cluster according to site. This study provides a comprehensive within-digestor analysis of the fate of ARGs, MGEs and antibiotic resistant E. coli and highlights the effectiveness of AD, particularly when TH is used as a pre-treatment, at reducing the abundance of most ARGs and MGEs in sludgeand preventing their release into the environment.


2020 ◽  
Author(s):  
Yan Xu ◽  
Houyu Li ◽  
Rongguang Shi ◽  
Jiapei Lv ◽  
Bihan Li ◽  
...  

Abstract Background: The prevalence of antibiotic resistance genes (ARGs) in animal manure poses a threat to environmental safety. Organic fertilizers fermented by livestock and poultry manure are directly applied to farmland and have the potential to cause outbreaks of bacterial resistance in agricultural environments. This study investigated the composition of ARGs in different animal manures and their derived organic fertilizers. Results: The results showed that the abundance of several ARGs, such as sul 2, Tet B-01, Tet G-01 and Tet M-01, in organic fertilizer samples was 12%~96% lower than that in animal manure. However, the abundance of Tet K and erm C was higher in animal manure than in organic fertilizers. No correlation between ARGs and environmental factors such as pH, TN, and antibiotics was observed by redundancy analysis (RDA). Procrustes analysis revealed a significant correlation between bacterial community structures and ARG abundance (r=0.799, p<0.01). Nonmetric multidimensional scaling (NMDS) analysis suggested that microorganisms in organic fertilizer may be derived from animal manure. Additionally, the abundance of pathogenic bacteria (especially Actinomadura ) would increase rather than decrease in manure compared to organic fertilizer. Conclusion: The diversity and abundance of most ARGs significantly decreased from animal manure to organic fertilizer. Microorganisms in the prepared organic fertilizer may mainly be inherited from the animal manure. The results also showed that the pathogens in the prepared organic fertilizer would significantly reduce, but would still cause partial pathogen proliferation.


2021 ◽  
Vol 22 (13) ◽  
pp. 6891
Author(s):  
João S. Rebelo ◽  
Célia P. F. Domingues ◽  
Francisco Dionisio ◽  
Manuel C. Gomes ◽  
Ana Botelho ◽  
...  

Recently, much attention has been paid to the COVID-19 pandemic. Yet bacterial resistance to antibiotics remains a serious and unresolved public health problem that kills hundreds of thousands of people annually, being an insidious and silent pandemic. To contain the spreading of the SARS-CoV-2 virus, populations confined and tightened hygiene measures. We performed this study with computer simulations and by using mobility data of mobile phones from Google in the region of Lisbon, Portugal, comprising 3.7 million people during two different lockdown periods, scenarios of 40 and 60% mobility reduction. In the simulations, we assumed that the network of physical contact between people is that of a small world and computed the antibiotic resistance in human microbiomes after 180 days in the simulation. Our simulations show that reducing human contacts drives a reduction in the diversity of antibiotic resistance genes in human microbiomes. Kruskal–Wallis and Dunn’s pairwise tests show very strong evidence (p < 0.000, adjusted using the Bonferroni correction) of a difference between the four confinement regimes. The proportion of variability in the ranked dependent variable accounted for by the confinement variable was η2 = 0.148, indicating a large effect of confinement on the diversity of antibiotic resistance. We have shown that confinement and hygienic measures, in addition to reducing the spread of pathogenic bacteria in a human network, also reduce resistance and the need to use antibiotics.


2021 ◽  
Author(s):  
Miguel Uyaguari

Abstract Background: Wastewater treatment plants are an essential part of maintaining the health and safety of the general public. However, they are also an anthropogenic source of antibiotic resistance genes. In this study, we characterized the resistome, the distribution of classes 1-3 integron-integrase genes (intI1, intI2, and intI3) as mobile genetic element biomarkers, and the bacterial and phage community compositions in the North End Sewage Treatment Plant in Winnipeg, Manitoba. Samples were collected from raw sewage, returned activated sludge, final effluent, and dewatered sludge. A total of 28 bacterial and viral metagenomes were sequenced over two seasons, fall and winter. Integron-integrase genes, the 16S rRNA gene, and the coliform beta-glucuronidase gene were also quantified during this time period. Results: Bacterial classes observed above 1% relative abundance in all treatments were Actinobacteria (39.24% ± 0.25%), Beta-proteobacteria (23.99% ± 0.16%), Gamma-proteobacteria (11.06% ± 0.09%), and Alpha-proteobacteria (9.18 ± 0.04%). Families within the Caudovirales order: Siphoviridae (48.69% ± 0.10%), Podoviridae (23.99% ± 0.07%), and Myoviridae (19.94% ± 0.09%) were the dominant phage observed throughout the NESTP. The most abundant bacterial genera (in terms of average percent relative abundance) in influent, returned activated sludge, final effluent, and sludge, respectively, includes Mycobacterium (37.4%, 18.3%, 46.1%, and 7.7%), Acidovorax (8.9%, 10.8%, 5.4%, and 1.3%), and Polaromonas (2.5%, 3.3%, 1.4%, and 0.4%).The most abundant class of antibiotic resistance in bacterial samples was tetracycline resistance (17.86% ± 0.03%) followed by peptide antibiotics (14.24% ± 0.03%), and macrolides (10.63% ± 0.02%). Similarly, the phage samples contained a higher prevalence of macrolide (30.12% ± 0.30%), peptide antibiotic (10.78% ± 0.13%), and tetracycline (8.69% ± 0.11%) resistance. In addition, intI1 was the most abundant integron-integrase gene throughout treatment (1.14x104 gene copies/mL) followed by intI3 (4.97x103 gene copies/mL) while intI2 abundance remained low (6.4x101 gene copies/mL).Conclusions: The wastewater treatment plant successfully reduced the abundance of bacteria, DNA bacteriophages, and antibiotic resistance genes although many of them still remained in effluent and biosolids. The presence of integron-integrase genes throughout treatment and in effluent suggests that antibiotic resistance genes could be actively disseminating resistance between both environmental and pathogenic bacteria.


2021 ◽  
Author(s):  
Chen Zhao ◽  
Chenyu Li ◽  
Xiaoming Wang ◽  
Zhuosong Cao ◽  
Chao Gao ◽  
...  

Abstract Background: Antibiotic resistance genes (ARGs) have become an important public health problem. In this study, we used metagenomic sequencing to analyze the composition of ARGs in certain original habitats of northeast China, comprising three different rivers and riverbank soils of the Heilongjiang River, Tumen River, and Yalu River. Results: Twenty types of ARG were detected in every water sample. The major ARGs were multidrug resistance genes, at approximately 0.5 copies/16s rRNA, accounting for 57.5% of the total ARG abundance. The abundance of multidrug, bacitracin, beta-lactam, macrolide‑lincosamide‑streptogramin, sulfonamide, fosmidomycin, and polymyxin resistance genes covered 96.9% of the total ARG abundance. No significant ecological boundary of ARG diversity was observed. The compositions of the resistance genes in the three rivers were very similar to each other, and 92.1% of ARG subtypes were shared by all water samples. Except for vancomycin resistance genes, almost all ARGs in riverbank soils were detected in the river water. About 31.05% ARGs were carried by Pseudomonas. Opportunistic pathogenic bacteria carrying resistance genes were mainly related to diarrhea and respiratory infections. Multidrug and beta-lactam resistance genes correlated positively with mobile genetic elements (MGEs), indicating a potential risk of diffusion.Conclusions: The composition of ARGs in three different rivers was similar, indicating that climate played an important role in ARG occurrence. ARG subtypes in river water were almost completely the same as those in riverbank soil. ARGs had no significant geographical distribution characteristics. Many ARGs were carried by human pathogenic bacteria related to human diarrhea and respiratory infections, such as Pseudomonas aeruginosa and Aeromonas caviae. In general, our results provide a valuable dataset of river water ARG distribution in northeast China. The related ecological geography distribution characteristics should be further explored.


Sign in / Sign up

Export Citation Format

Share Document