scholarly journals Comparison of Two Different Management Practices under Organic Farming System

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1466
Author(s):  
Jiří Antošovský ◽  
Martin Prudil ◽  
Milan Gruber ◽  
Pavel Ryant

Organic farmers usually do not have the opportunity to address the actual symptoms of deficiency through the foliar application of synthetic fertilization, therefore, the main treatment is realized by green manure crop cultivation and application of organic fertilizers. The aim of this long-term experiment was to compare two different production systems with and without livestock in terms of organic farming, and a control variant with no fertilization was also included (treatment 1). The production system without animal husbandry was based on solely the application of renewable external resources (compost or digestate) (treatment 2) and the same fertilization with the addition of auxiliary substances (AS) (treatment 3). The production system with animal husbandry included utilization of fertilizers produced on the farm (fermented urine or manure) using solely farm fertilizers (treatment 4) and in addition with AS (treatment 5). Each treatment had three replications. This work describes the average yields from four experimental years and five experimental localities. Winter wheat, potatoes, winter wheat spelt and legume-cereal mix with corn were used and examined as model crops during the first four years of this long-term research. The highest average yield of winter wheat grain and potato tubers during the first two years of the experiment were obtained after the treatments 2 (7.1 t/ha grain, 33,9 t/ha tubers) and 3 (7.0 t/ha grain, 34,1 t/ha tubers). The several times higher nitrogen content in applied digestate and compost in comparison with fermented urine and manure was probably the reason for such results. On the contrary, the results obtained from the third (spelt) and fourth (LCM and corn) experimental years favored treatment 4 (5,5 t/ha grain, 4,6 cereal unit/ha) and 5 (5,4 t/ha grain, 4,7 cereal unit/ha) from the long-term point of view. After four experimental years, the presented results supported the application of farm fertilizers as a preferable option. The treatments with additional application of AS did not provide a higher yield, therefore, such an application seems unnecessary.

Author(s):  
Jiri Antosovsky ◽  
Pavel Ryant ◽  
Martin Prudil ◽  
Milan Gruber ◽  
Ivana Komprsová

Nitrogen fertilization cannot be used by actual needs of plants during vegetation in organic farming. The proper crop rotation and harmonic nutrition are necessary for good and quality products. The methods of treatment are mainly realized by cultivation of green manure crop and fertilizing by organic fertilizers. The aim of the long-term experiment was to evaluate the effect of different localities and different organic fertilizers on crop yield in organic farming. Variants of fertilization included in the experiment are: 1. Unfertilized control, 2. Green manure, 3. Green manure + renewable external sources, 4. Green manure + renewable external sources + auxiliary substances, 5. Green manure + farm fertilizers, 6. Green manure + farm fertilizers + auxiliary substances. The experiment started by sowing of winter wheat so green manure crop was not grown in the first experimental year. The highest yield of winter wheat grain coming from the first year of the experiment was observed on the variant with renewable external sources (digestate). Average grain yield on this variant was about 7.12 t/ha (up to 0.74 t/ha increased than the unfertilized control). Average yield of potatoes from the second year of the experiment was the highest after combination with green manure + renewable external sources (compost + digestate) + auxiliary substances. This variant achieved yield about 34.08 t/ha, which is increased by 9.35 t/ha compared to the control variant. Results from this two-year experiment showed that the most suitable combination of fertilization with or without green manure crop is compost + digestate. These results were probably caused by higher content of nitrogen in organic fertilizers (compost + digestate) used in this variant compared to other variants. Statistical difference of achieved yields was observed between each experimental station in both experimental years.


Author(s):  
Jiri Antosovsky ◽  
Pavel Ryant ◽  
Martin Prudil ◽  
Milan Gruber ◽  
Anna Hammerová

Nitrogen fertilization of plants during the vegetation is very problematic in terms of organic farming. The balanced crop rotation and versatile nutrition are essential for maintaining good yields and high‑quality products. The application of organic fertilizers and incorporation of green manure crops are one of the best options for achieving optimal results in organic farming. The goal of this long‑term research was to examine the effect of several different organic fertilizers and divergent experimental stations on crop yield in conditions of organic farming. a total of 6 variants of fertilization were evaluated in this experiment: 1. unfertilized, 2. green manure (GM), 3. GM + renewable external sources, 4. GM + renewable external sources + biostimulants, 5. GM + farm fertilizers, 6. GM + farm fertilizers + biostimulants. The winter wheat was sown at the start of the experiment in autumn of 2014. Therefore, green manure was not cultivated in the first experimental year. The results from the first year of this experiment showed, that the variant with renewable external resource (digestate) provided the highest yield. The average yield of wheat grain on this variant was about 7.12 t/ha, which is increased by 0.74 t/ha in comparison with unfertilized control variant. The potatoes were used as a model crop in second year of the experiment. The highest yield of potatoes coming from the second experimental year was observed on the combination of green manure + renewable external sources (compost and digestate) + biostimulants. The average yield of potatoes on this variant was about 34.08 t/ha. The yield of potatoes observed on the unfertilized variant was lower by 9.35 t/ha. The content of nitrogen in organic fertilizers (compost and digestate) was higher in comparison with other organic fertilizers used in the experiment, which probably caused these results. The winter wheat spelt was used as a model crop in the third year of the experiment. The application of organic fertilizers was completely omitted in this year. The highest average yield of spelt (5.5 t/ha) was observed on the variant called green manure + farm fertilizers. The average yield achieved on the unfertilized variant was lower by 0.7 t/ha. The result from this three experimental years point out the similarity between farming with and without animal husbandry in organic farming. The statistical differences between experimental stations were observed in experimental years.


2003 ◽  
Vol 83 (4) ◽  
pp. 363-380 ◽  
Author(s):  
A. J. VandenBygaart ◽  
E. G. Gregorich ◽  
D. A. Angers

To fulfill commitments under the Kyoto Protocol, Canada is required to provide verifiable estimates and uncertainties for soil organic carbon (SOC) stocks, and for changes in those stocks over time. Estimates and uncertainties for agricultural soils can be derived from long-term studies that have measured differences in SOC between different management practices. We compiled published data from long-term studies in Canada to assess the effect of agricultural management on SOC. A total of 62 studies were compiled, in which the difference in SOC was determined for conversion from native land to cropland, and for different tillage, crop rotation and fertilizer management practices. There was a loss of 24 ± 6% of the SOC after native land was converted to agricultural land. No-till (NT) increased the storage of SOC in western Canada by 2.9 ± 1.3 Mg ha-1; however, in eastern Canada conversion to NT did not increase SOC. In general, the potential to store SOC when NT was adopted decreased with increasing background levels of SOC. Using no-tillage, reducing summer fallow, including hay in rotation with wheat (Triticum aestivum L.), plowing green manures into the soil, and applying N and organic fertilizers were the practices that tended to show the most consistent in creases in SOC storage. By relating treatment SOC levels to those in the control treatments, SOC stock change factors and their levels of uncertainty were derived for use in empirical models, such as the United Nations Intergovernmental Panel on Climate Change (IPCC). Guidelines model for C stock changes. However, we must be careful when attempting to extrapolate research plot data to farmers’ fields since the history of soil and crop management has a significant influence on existing and future SOC stocks. Key words: C sequestration, tillage, crop rotations, fertilizer, cropping intensity, Canada


Soil Research ◽  
2017 ◽  
Vol 55 (8) ◽  
pp. 778
Author(s):  
G. S. A. Castro ◽  
C. A. C. Crusciol ◽  
C. A. Rosolem ◽  
J. C. Calonego ◽  
K. R. Brye

This work aimed to evaluate the effects of crop rotations and soil acidity amelioration on soil physical properties of an Oxisol (Rhodic Ferralsol or Red Ferrosol in the Australian Soil Classification) from October 2006 to September 2011 in Botucatu, SP, Brazil. Treatments consisted of four soybean (Glycine max)–maize (Zea mays)–rice (Oryza sativa) rotations that differed in their off-season crop, either a signal grass (Urochloa ruziziensis) forage crop, a second crop, a cover crop, or fallow. Two acid-neutralising materials, dolomitic lime (effective calcium carbonate equivalent (ECCE) = 90%) and calcium-magnesium silicate (ECCE = 80%), were surface applied to raise the soil’s base saturation to 70%. Selected soil physical characteristics were evaluated at three depths (0–0.1, 0.1–0.2, and 0.2–0.4 m). In the top 0.1 m, soil bulk density was lowest (P < 0.05) and macroporosity and aggregate stability index were greatest (P < 0.05) in the forage crop compared with all other production systems. Also, bulk density was lower (P < 0.05) and macroporosity was greater (P < 0.05) in the acid-neutralising-amended than the unamended control soil. In the 0.1–0.2-m interval, mean weight diameter and mean geometric diameter were greater (P < 0.05) in the forage crop compared with all other production systems. All soil properties evaluated in this study in the 0.2–0.4-m interval were unaffected by production system or soil amendment after five complete cropping cycles. Results of this study demonstrated that certain soil physical properties can be improved in a no-tillage soybean–maize–rice rotation using a forage crop in the off-season and with the addition of acid-neutralising soil amendments. Any soil and crop management practices that improve soil physical properties will likely contribute to sustaining long-term soil and crop productivity in areas with highly weathered, organic matter-depleted, acidic Oxisols.


2018 ◽  
Vol 24 (3-4) ◽  
Author(s):  
P. Dremák ◽  
Á. Csihon ◽  
I. Gonda

In our study, vegetative characteristics of 39 apple cultivars were evaluated in environmentally friendly production systems. Numbers of the branches of the central leader in different high zones were shown. According to our results, number of the branches of the axis was probably larger in the integrated production system, compared to the organic one, which is related to the conditional status of the trees. Based on our experiences training and maintaining canopies in integrated system was easier, as relative more extensive canopies were needed in organic farming.


2013 ◽  
Vol 55 (1) ◽  
pp. 311-317
Author(s):  
Ewa Solarska ◽  
Magdalena Grudzińska

<i>Pseudocercosporella herpotrichoides</i> was detected by PCR in winter wheat cultivated in different production systems in 2000 and 2001. In all tested systems only pathotype R of pathogen was detected. Detection of fungus depended on production system and weather conditions. Pathogen was not detected in both tested cultivars only in ecological system but only in season with less favourable conditions for disease development


2021 ◽  
pp. 36-42
Author(s):  
О.А. Оленин ◽  
С.Н. Зудилин

Развитие органического земледелия, в первую очередь, зависит от наличия органических удобрений и биопрепаратов. Цель исследований – на основе утилизации органических отходов и сырья разработать полифункциональные биопрепараты из компонентов животного и растительного происхождения и изучить их влияние на показатели агрофитоценозов и урожайность полевых и садовых культур. В работе использованы результаты исследований по разработке полифункциональных биопрепаратов, а также их эффективности на опытном поле Самарского ГАУ в 2017-2019 гг. В результате была разработана ассортиментная линейка биопрепаратов «АгроТоник» с функциями удобрения и биостимулятора роста: «Цветовод», «Садовод», «Овощевод», «Полевод», «Лесовод» и «Универсальный». «АгроТоник», в отличие от многих органических и минеральных удобрений, содержит все необходимые для растений компоненты: макро-, мезо- и микроэлементы в легкодоступной форме, микроорганизмы, стимуляторы роста – биоактивные фитогормоны, аминокислоты растительного происхождения, витамины, комплекс целлюлозолитических ферментов, почвенные антибиотики, гуминовые вещества, биоприлипатель. Многокомпонентный биопрепарат с функциями удобрения, фунгицида и бактерицида снижал пораженность растений озимой пшеницы на 16,7-27,1 %, по отношению к контролю, и на 17,4-22,6 %, по сравнению с минеральными удобрениями. Биопрепарат повышал урожайность озимой пшеницы на 7,7-25,4 % по сравнению с контролем, тогда как применение пестицида только на 5,3-11,5 %, при стоимости однократно внесенного гербицида в среднем 500,00 руб./га, а биопрепарата – 300,00 руб./га при двукратной обработке. The development of organic farming primarily depends on the availability of organic fertilizers and biological products. The goal of the research is to develop multifunctional biological products from components of animal and plant origin based on the utilization of organic waste and raw materials and to study their impact on the indicators of agrophytocenoses and the yield of field and horticultural crops. The work uses the results of research on the development of multifunctional biological products, as well as their effectiveness in the experimental field of the Samara State Agrarian University in 2017-2019. As a result, the line of "AgroTonik" biological products with the functions of fertilizer and the growth biostimulator was developed: «Tsvetovod», «Sadovod», «Ovoshchevod», «Polevod», «Lesovod» and «Universal'niy». "AgroTonik", unlike many organic and mineral fertilizers, contains all the components necessary for plants: macro -, meso- and microelements in an easily available form, microorganisms, growth stimulators – bioactive phytohormones, amino acids of plant origin, vitamins, a complex of cellulosolytic enzymes, soil antibiotics, humic substances, bio-sticking agent. The multicomponent biological product with the functions of fertilizer, fungicide and bactericide reduced the affection of winter wheat plants by 16.7-27.1 % concerning the control, and by 17.4-22.6 %, in comparison with mineral fertilizers. The biological product increased the yield of winter wheat by 7.7-25.4% compared to the control, while the use of a pesticide only by 5.3-11.5 %, with the cost of a single herbicide on average 500 rubles/ha, and a biological product – 300 rubles/ha with double treatment.


2020 ◽  
Vol 34 (6) ◽  
pp. 876-881
Author(s):  
Jed B. Colquhoun ◽  
Richard A. Rittmeyer ◽  
Daniel J. Heider

AbstractWeed management in carrot is challenging, given slow and inconsistent crop emergence and early-season growth and the lack of practical season-long management tools such as herbicides. We investigated holistic carrot production systems with a focus on minimizing inputs while optimizing resource use. In an overall sense, results of this work were consistent between years, and stark. The choice of carrot variety had a moderate influence on carrot foliar canopy development and, subsequently, weed density. For example, ‘Cupar’ carrot formed a complete crop canopy sooner than the other dicer-type ‘Canada’ variety. Likely as a result, density of weed species such as spotted ladysthumb and common lambsquarters was less where ‘Cupar’ was grown compared with where ‘Canada’ was grown. Gibberellic acid as a foliar application was not successful in these studies and, in a few cases, may have even increased weed-seed germination and establishment. Adding two carrot rows to the current regional industry-standard three-row bed system not only enhanced competitiveness with weeds but also improved carrot yield without additional fertilizer, water, or pest management inputs. By far, though, the most successful strategy to reduce weed density while maintaining or improving carrot yield was to delay seeding by 17 to 19 d. We anticipate more holistic production system research that integrates low-input alternatives in other crops as herbicide-resistant weeds proliferate while few new herbicides are developed. As was demonstrated in this research, such novel approaches can be successful without adding significant economic burden to the farmer or increasing risk of crop failure.


2020 ◽  
Vol 898 ◽  
pp. 45-50
Author(s):  
Cahyono Agus ◽  
Pita Asih Bekti Cahyanti ◽  
Bambang Suhartanto ◽  
Pipit Noviyani

The tropical ecosystem had high biomass productivity but still less in economic values. Integrated Bio-cycle Farming System (IBFS) was an alternative system that harmoniously combines agricultural sectors (agriculture, forestry, animal husbandry, fishery, plantation estate, horticulture) and non-agricultural aspects (industry, household, infrastructure, the marketplace) on integrated ecological management. The key characteristics of IBFS developed in UGM University Farm were (i) an integration of agriculture and non-agriculture sector, (ii) value of environment, esthetics and economics, (iii) rotation and diversity of plants, (iv) artificial and functional biotechnology, (v) management of closed organic cycle, (vi) ecosystem health management, (vii) agropolitan concept, (viii) specific management of plant and (ix) holistic and integrated system. The management of cycle of energy, organic matter and carbon, water, nutrient, production, crop, money conducted through 9R (reuse, reduce, recycle, refill, replace, repair, replant, rebuild, reward) to obtain optimal benefits for global environment and livelihood. The system had a sustainable multifunction and multi-product (food, feed, fuel, fiber, fertilizer, biopharma, water, energy, oxygen, edutainment, eco-tourism). They would meet the expected basic need for daily-, monthly-, yearly- and decade’s income at short-, medium- and long- term periods. IBFS was a good prospect for sustainable economic, environmental, and socio-culture aspects.


2020 ◽  
Vol 158 (1-2) ◽  
pp. 65-79
Author(s):  
J. Macholdt ◽  
H.-P. Piepho ◽  
B. Honermeier ◽  
S. Perryman ◽  
A. Macdonald ◽  
...  

AbstractThe development of resilient cropping systems with high yield stability is becoming increasingly important due to future climatic and agronomic challenges. Consequently, it is essential to compare the effects of different agronomic management practices, such as cropping sequences and nutrient supply, on the stability of crop yields. Long-term experiments are a valuable resource for investigating these effects, as they provide enough time to accurately estimate stability parameters. The objective of the current study was to compare the effects of different cropping sequencing (#1: continuous v. rotational), fertilization (#2: mineral v. organic) and straw management techniques (in the case of continuous wheat; #3: removal v. incorporation) on the yield stability of winter wheat; yield risk (the probability of yield falling below a threshold yield level) and inter-annual yield variability were used as stability indicators of the effects. Long-term yield data from the Broadbalk Wheat Experiment (Rothamsted, UK) were analysed using a mixed model. Overall, the results showed that rotational cropping combined with sufficient mineral N fertilizer, with or without organic manure, ensured stable wheat yields while reducing yield risk. In contrast, higher yield risks and inter-annual yield variabilities were found in continuous wheat sections with less mineral N fertilizer or with organic manure only.


Sign in / Sign up

Export Citation Format

Share Document