scholarly journals Soil Enzyme Activity and Stoichiometry: Linking Soil Microorganism Resource Requirement and Legume Carbon Rhizodeposition

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2131
Author(s):  
Mohamed Kanté ◽  
Wassila Riah-Anglet ◽  
Jean-Bernard Cliquet ◽  
Isabelle Trinsoutrot-Gattin

Legumes provide multiple ecosystem services in agricultural systems. The objectives of this study were to evaluate the influence of different legumes through C rhizodeposition on the dynamics of C, N and P in soil and on microbial communities’ resource requirements. Legumes pea (Pisum sativum L.), faba bean (Vicia faba L.), white clover (Trifolium repens L.), crimson clover (Trifolium incarnatum L.) and non-legume wheat (Triticum aestivum L.) were grown in pots. Carbon rhizodeposition was quantified by using 13CO2 labeling, and six soil enzyme activities were measured: β-glucosidase (BG), arylamidase (ARYLN), N-acetyl-glucosaminidase (NAG), phosphatases (PHO) and alkaline and acid phosphatases (AKP and ACP). Enzyme stoichiometry approaches were applied. The results showed that BG, NAG and ACP activities were positively influenced by faba bean and clovers. Enzyme stoichiometry analysis revealed a limitation of microorganisms in C and P resources at the plant reproductive stage. These results were explained by plant functional traits. Plant biomass production, root total length, the ability of plants to rhizodeposit C and the C and N content of plant tissues were the main explicative factors. This study also shows that N and C nutrient supplies positively contribute to nutritional requirements and the growth of microorganisms and P availability in soil.

Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 205
Author(s):  
Ihab M. Farid ◽  
Mohamed A. El-Ghozoli ◽  
Mohamed H. H. Abbas ◽  
Dalia S. El-Atrony ◽  
Hassan H. Abbas ◽  
...  

Organic amendments are important sources of nutrients that release upon organic matter degradation, yet the stability of these organics in arid and semi-arid regions is relatively low. In contrast, humic substances (HS) are resistant to biodegradation and can keep nutrients in the soil available for the plant over a long time. Combinations between humic substances (HS) and mineral-N fertilizers are assumed to retain higher available nutrients in soils than those recorded for the sole application of either mineral or organic applications. We anticipate, however, that humic substances might not be as efficient as the organics from which they were extracted in increasing NP uptake by plants. To test these assumptions, faba bean was planted in a pot experiment under greenhouse conditions following a complete randomized design while considering three factors: two soils (calcareous and non-calcareous, Factor A), two organics (biogas and compost, Factor B) and combinations of the organics and their extracts (HA or FA) together with complementary doses of mineral-N ((NH4)2SO4) to attain a total rate of 50 kg N ha−1 (the recommended dose for faba bean plants) (Factor C). Results indicated that nitrogenase activity increased significantly due to the application of the used organics. In this respect, compost manure caused higher nitrogenase activity than biogas manure did. Humic substances raised NP-availability and the uptake by plants significantly; however, the values of increase were lower than those that occurred due to the compost or biogas manure. Moreover, the sole application of the used organics recorded the highest increases in plant biomass. Significant correlations were also detected between NP-availability, uptake and plant biomass. This means that HS could probably retain nutrients in available forms for long time periods, yet nutrients released continuously but slowly upon decomposition of organics seemed more important for plant nutrition.


2021 ◽  
Vol 12 ◽  
Author(s):  
Leangsrun Chea ◽  
Ana Meijide ◽  
Catharina Meinen ◽  
Elke Pawelzik ◽  
Marcel Naumann

The limited availability of phosphorus (P) in soils causes a major constraint in the productivity of potatoes, which requires increased knowledge of plant adaptation responses in this condition. In this study, six potato cultivars, namely, Agria, Lady Claire, Milva, Lilly, Sieglinde, and Verdi, were assessed for their responses on plant growth, leaf physiology, P use efficiency (PUE), and tuber quality with three P levels (Plow, Pmed, and Phigh). The results reveal a significant variation in the cultivars in response to different P availabilities. P-efficient cultivars, Agria, Milva, and Lilly, possessed substantial plant biomass, tuber yield, and high P uptake efficiency (PUpE) under low P supply conditions. The P-inefficient cultivars, Lady Claire, Sieglinde, and Verdi, could not produce tubers under P deprivation conditions, as well as the ability to efficiently uptake P under low-level conditions, but they were efficient in P uptake under high soil P conditions. Improved PUpE is important for plant tolerance with limited P availability, which results in the efficient use of the applied P. At the leaf level, increased accumulations of nitrate, sulfate, sucrose, and proline are necessary for a plant to acclimate to P deficiency-induced stress and to mobilize leaf inorganic phosphate to increase internal PUE and photosynthesis. The reduction in plant biomass and tuber yield under P-deficient conditions could be caused by reduced CO2 assimilation. Furthermore, P deficiency significantly reduced tuber yield, dry matter, and starch concentration in Agria, Milva, and Lilly. However, contents of tuber protein, sugars, and minerals, as well as antioxidant capacity, were enhanced under these conditions in these cultivars. These results highlight the important traits contributing to potato plant tolerance under P-deficient conditions and indicate an opportunity to improve the P efficiency and tuber quality of potatoes under deficient conditions using more efficient cultivars. Future research to evaluate molecular mechanisms related to P and sucrose translocation, and minimize tuber yield reduction under limited P availability conditions is necessary.


2016 ◽  
Vol 44 (2) ◽  
pp. 162
Author(s):  
Sartika Widowati ◽  
Nurul Khumaida ◽  
Sintho Wahyuning Ardie ◽  
Dan Trikoesoemaningtyas

ABSTRACT<br /><br />Indonesia is one of the largest wheat importers. Suitable environmental condition for wheat needs to be studied if wheat is going to be widely cultivated in Indonesia. The adaptability of wheat grown in various climates and altitudes is one of the important aspects. The objective of this experiment was to study the quantitative and morphological character of wheat grown in middle land (540 m asl) in Bogor, West Java. The experiment was arranged in randomized complete block design with three replications. Wheat genotypes used were three national varieties (Nias, Selayar, and Dewata), four new improved varieties (Guri 3 Agritan, Guri 4 Agritan, Guri 5 Agritan, and Guri 6 Unand), and one introduced genotype (SBD). Data were collected for several quantitative variables and seventeen morphological characters based on UPOV descriptor. The result showed that wheat growth was restricted in Bogor. Genotype determined plant height, leaf number, ear length, root length, number of spikelet, harvest time, seed weight, number of tillers, and plant biomass. Based on ear length, grain weight, and plant biomass, Guri 3 Agritan had the highest production than the other genotypes.<br /><br />Keywords: diversity, genetic relationship, high temperature, introduced genotype, phylogenetic<br /><br />


2017 ◽  
Vol 68 (2) ◽  
pp. 212-220 ◽  
Author(s):  
D. Wang ◽  
H. L. He ◽  
Q. Gao ◽  
C. Z. Zhao ◽  
W. Q. Zhao ◽  
...  

Author(s):  
Mohammad Sajid ◽  
Zahid Raza

High Performance Computing (HPC) systems demand and consume a significant amount of resources (e.g. server, storage, electrical energy) resulting in high operational costs, reduced reliability, and sometimes leading to waste of scarce natural resources. On one hand, the most important issue for these systems is achieving high performance, while on the other hand, the rapidly increasing resource costs appeal to effectively predict the resource requirements to ensure efficient services in the most optimized manner. The resource requirement prediction for a job thus becomes important for both the service providers as well as the consumers for ensuring resource management and to negotiate Service Level Agreements (SLAs), respectively, in order to help make better job allocation decisions. Moreover, the resource requirement prediction can even lead to improved scheduling performance while reducing the resource waste. This work presents an analytical model estimating the required resources for the modular job execution. The analysis identifies the number of processors required and the maximum and minimum bounds on the turnaround time and energy consumed. Simulation study reveals that the scheduling algorithms integrated with the proposed analytical model helps in improving the average throughput and the average energy consumption of the system. As the work predicts the resource requirements, it can even play an important role in Service-Oriented Architectures (SOA) like Cloud computing or Grid computing.


Sign in / Sign up

Export Citation Format

Share Document