scholarly journals Delivery of Inoculum of Rhizophagus irregularis via Seed Coating in Combination with Pseudomonas libanensis for Cowpea Production

Agronomy ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 33 ◽  
Author(s):  
Ying Ma ◽  
Aleš Látr ◽  
Inês Rocha ◽  
Helena Freitas ◽  
Miroslav Vosátka ◽  
...  

Cowpea (Vigna unguiculata L. Walp) is an important legume grown primarily in semi-arid area. Its production is generally inhibited by various abiotic and biotic stresses. The use of beneficial microorganisms (e.g., plant growth promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF)) can enhance agricultural production, as these microorganisms can improve soil fertility and plant tolerance to environmental stresses, thus enhancing crop yield in an eco-friendly manner. Application of PGPB and AMF in large scale agriculture needs to be improved. Thus, the use of seed coating could be an efficient mechanism for placement of inocula into soils. The aim of this study was to evaluate the effects of the AMF Rhizophagus irregularis BEG140 and the PGPB Pseudomonas libanensis TR1 alone or in combination on the biomass and physiological traits of cowpea. Four treatments were set: (i) non-inoculated control; (ii) PGPB; (iii) AMF applied via seed coating; and (iv) PGPB + AMF applied via seed coating. Cowpea plants inoculated via seed coating with R. irregularis and those inoculated with R. irregularis + P. libanensis showed root mycorrhizal colonization of 21.7% and 24.2%, respectively. PGPB P. libanensis was efficient in enhancing plant biomass and seed yield. There was no benefit of single (AMF) or dual (PGPB + AMF) inoculation on plant growth or seed yield. The application of beneficial soil microorganisms can be a viable approach for sustainable cowpea production in precision agriculture scenarios.

2021 ◽  
Vol 16 (AAEBSSD) ◽  
pp. 77-85
Author(s):  
Sridevi Tallapragada ◽  
Rajesh Lather ◽  
Vandana ◽  
Gurnam Singh

Phytoremediation is the plant-based technology that has emerged as a novel cost effective and ecofriendly technology in which green plants are used for extraction, sequestration and/or detoxification of the pollutants. Plants possess the natural ability to degrade heavy metals and this property of plants to detoxify contaminants can be used by genetic engineering approach. Currently, the quality of soil and water has degraded considerably due heavy metal accumulation through discharge of industrial, agricultural and domestic waste. Heavy metal pollution is a global concern and a major health threat worldwide. They are toxic, and can damage living organisms even at low concentrations and tend to accumulate in the food chain. The most common heavy metal contaminants are: As, Cd, Cr, Cu, Hg, Pb and Zn. High levels of metals in soil can be phytotoxic, leading to poor plant growth and soil cover due to metal toxicity and can lead to metal mobilization in runoff water and thus have a negative impact on the whole ecosystem. Phytoremediation is a green strategy that uses hyperaccumulator plants and their rhizospheric micro-organisms to stabilize, transfer or degrade pollutants in soil, water and environment. Mechanisms used to remediate contaminated soil includes phytoextraction, phytostabilization, phytotransformation, phytostimulation, phytovolatilization and rhizofiltration. Traditional phytoremediation method presents some limitations regarding their applications at large scale, so the application of genetic engineering approaches such as transgenic transformation, nanoparticles addition and phytoremediation assisted with phytohormones, plant growth-promoting bacteria and Arbuscular mycorrhizal fungi (AMF) inoculation has been applied to ameliorate the efficacy of plants for heavy metals decontamination. In this review, some recent innovative technologies for improving phytoremediation and heavy metals toxicity and their depollution procedures are highlighted.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


2021 ◽  
Author(s):  
Lena Reifschneider ◽  
Vinzenz Franz Eichinger ◽  
Evelin Pihlap ◽  
Noelia Garcia-Franco ◽  
Anna Kühnel ◽  
...  

<p>The application of rock powder is an option to improve soil fertility while valorising the overburden material produced by industries. The “enhanced weathering” of silicate rock has also gained recent interest in the scientific community for its potential to mitigate climate change. However, the effect of rock powder on the soil physical properties remains unclear, especially under climate change (e.g., increasing drought events). Prior to any large scale application of rock powder, it is crucial to disentangle the potential effects of rock powder application on its environment. In a mesocosm experiment, we explored the effect of three rock powders on plant biomass, soil aggregation and organic carbon (OC) allocation within aggregates, in two soils with clayey and sandy textures, under regular watering or severe drought conditions. We demonstrate that the rock powder was the third factor after drought and soil texture significantly affecting the plant growth, resulting in a significant plant biomass decrease ranging from - 13 % to - 42 % compared with the control. We mainly attribute this effect to the increase of the already neutral soil pH, along with the release of excessive heavy metal amounts at a toxic range for the plant. Yet, we found that adding rock powder to the soil resulted in an increase of the relative amount of microaggregates in the soil by up to + 70 %, along with a re-distribution of OC within the fine fractions of the soil (up to + 32 % of OC in < 250 µm fractions). The new mineral-mineral and organo-mineral interactions promoted by the rock powder addition could potentially favour OC persistence in soil on the long term. With our results, we insist on the potential risks for plant growth associated to the application of rock powder when not handled properly. In addition to the current enthusiasm around the capacity of rock powder to enhance carbon sequestration in the inorganic form, we also encourage scientists to focus their research on its effect on soil structure properties and OC storage.</p>


2018 ◽  
Vol 156 (1) ◽  
pp. 46-58 ◽  
Author(s):  
Caixia Liu ◽  
Sabine Ravnskov ◽  
Fulai Liu ◽  
Gitte H. Rubæk ◽  
Mathias N. Andersen

AbstractDeficit irrigation (DI) improves water use efficiency (WUE), but the reduced water input often limits plant growth and nutrient uptake. The current study examined whether arbuscular mycorrhizal fungi (AMF) could alleviate abiotic stress caused by low phosphorus (P) fertilization and DI.A greenhouse experiment was conducted with potato grown with (P1) or without (P0) P fertilization, with AMF (M1+:Rhizophagus irregularisor M2+:Glomus proliferum) or AMF-free control (M−) and subjected to full irrigation (FI), DI or partial root-zone drying (PRD).Inoculation of M1+ and M2+ maintained or improved plant growth and P/nitrogen (N) uptake when subjected to DI/PRD and P0. However, the positive responses to AMF varied with P level and irrigation regime. Functional differences were found in ability of AMF species alleviating plant stress. The largest positive plant biomass response to M1+ and M2+ was found under FI, both at P1 and P0 (25% increase), while plant biomass response to M1+ and M2+ under DI/PRD (14% increase) was significantly smaller. The large growth response to AMF inoculation, particularly under FI, may relate to greater photosynthetic capacity and leaf area, probably caused by stimulation of plant P/N uptake and carbon partitioning toward roots and tubers. However, plant growth response to AMF was not related to the percentage of AMF root colonization. Arbuscular mycorrhizal fungi can maintain and improve P/N uptake, WUE and growth of plants both at high/low P levels and under FI/DI. If this is also the case under field conditions, it should be implemented for sustainable potato production.


Plant Disease ◽  
2016 ◽  
Vol 100 (4) ◽  
pp. 704-710 ◽  
Author(s):  
Estrella Luna ◽  
Emily Beardon ◽  
Sabine Ravnskov ◽  
Julie Scholes ◽  
Jurriaan Ton

Resistance-inducing chemicals can offer broad-spectrum disease protection in crops, but can also affect plant growth and interactions with plant-beneficial microbes. We have evaluated different application methods of β-aminobutyric acid (BABA) and jasmonic acid (JA) for long-lasting induced resistance in tomato against Botrytis cinerea. In addition, we have studied nontarget effects on plant growth and root colonization by arbuscular mycorrhizal fungi (AMF). Germinating seeds for 1 week in BABA- or JA-containing solutions promoted seed germination efficiency, did not affect plant growth, and induced resistance in 4-week-old plants. When formulating BABA and JA in carboxymethyl cellulose seed coating, only BABA was able to induce resistance in 4-week-old plants. Root treatment of 1-week-old seedlings with BABA or JA also induced resistance in 4-week-old plants. However, this seedling treatment repressed plant growth at higher concentrations of the chemicals, which was particularly pronounced in hydroponically grown plants after BABA treatment. Both seed coating with BABA, and seedling treatments with BABA or JA, did not affect AMF root colonization in soil-grown tomato. Our study has identified commercially feasible application methods of BABA and JA, which induce durable disease resistance in tomato without concurrent impacts on plant growth or colonization by plant-beneficial AMF.


2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Waleed Fouad Abobatta

Plant stimulants is an organic substance and micro-organisms, used by small quantities, Biostimulants categorize according to their nature, modes of action, and types of effects on crops, there are main groups of plant stimulants include Protein hydrolysates, Humate substances, Seaweed extracts, Biopolymers (Chitosan and other polymers), and Microbial biostimulants like mycorrhizal, non-mycorrhizal fungi, Rhizobium, and Trichoderma. Horticulture crop production facing several challenges particularly abiotic stresses and malnutrition resulting in yield loss and affects negatively fruit quality. The main effects of plant stimulants due to its working as the auxin-like effect, enhancing Nitrogen uptake, and stimulate plant growth. There is various stimulation effects on horticulture crops including promote plant growth, increase plant tolerance for biotic and abiotic stresses. Applying plant stimulants to plants or the rhizosphere stimulating plant metabolic processes, increase the efficiency of the nutrients, and increase plant tolerance to abiotic stress, consequently, improving plant growth increases yield, and enhancing fruit quality.


2021 ◽  
Vol 5 ◽  
Author(s):  
Gustavo Santoyo ◽  
Elisa Gamalero ◽  
Bernard R. Glick

Soil microbiota plays an important role in the sustainable production of the different types of agrosystems. Among the members of the plant microbiota, mycorrhizal fungi (MF) and plant growth-promoting bacteria (PGPB) interact in rhizospheric environments leading to additive and/or synergistic effects on plant growth and heath. In this manuscript, the main mechanisms used by MF and PGPB to facilitate plant growth are reviewed, including the improvement of nutrient uptake, and the reduction of ethylene levels or biocontrol of potential pathogens, under both normal and stressful conditions due to abiotic or biotic factors. Finally, it is necessary to expand both research and field use of bioinoculants based on these components and take advantage of their beneficial interactions with plants to alleviate plant stress and improve plant growth and production to satisfy the demand for food for an ever-increasing human population.


2020 ◽  
Vol 10 (20) ◽  
pp. 7326
Author(s):  
Stefan Shilev

Soil deterioration has led to problems with the nutrition of the world’s population. As one of the most serious stressors, soil salinization has a negative effect on the quantity and quality of agricultural production, drawing attention to the need for environmentally friendly technologies to overcome the adverse effects. The use of plant-growth-promoting bacteria (PGPB) can be a key factor in reducing salinity stress in plants as they are already introduced in practice. Plants having halotolerant PGPB in their root surroundings improve in diverse morphological, physiological, and biochemical aspects due to their multiple plant-growth-promoting traits. These beneficial effects are related to the excretion of bacterial phytohormones and modulation of their expression, improvement of the availability of soil nutrients, and the release of organic compounds that modify plant rhizosphere and function as signaling molecules, thus contributing to the plant’s salinity tolerance. This review aims to elucidate mechanisms by which PGPB are able to increase plant tolerance under soil salinity.


Sign in / Sign up

Export Citation Format

Share Document