scholarly journals In Vitro Fermentation Patterns and Methane Output of Perennial Ryegrass Differing in Water-Soluble Carbohydrate and Nitrogen Concentrations

Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1076 ◽  
Author(s):  
M. Jordana Rivero ◽  
Juan P. Keim ◽  
Oscar A. Balocchi ◽  
Michael R.F. Lee

The objective of this study was to determine the effect of perennial ryegrass (PRG) forages differing in their concentration of water-soluble carbohydrates (WSC) and crude protein (CP), and collected in spring and autumn, on in vitro rumen fermentation variables, nitrogen (N) metabolism indicators and methane (CH4) output, using a batch culture system. Two contrasting PRG pastures, sampled both in autumn and spring, were used: high (HS) and low (LS) sugar pastures with WSC concentrations of 322 and 343 g/kg for HS (autumn and spring), and 224 and 293 g/kg for LS in autumn and spring, respectively. Duplicates were incubated for 24 h with rumen inocula in three different days (blocks). Headspace gas pressure was measured at 2, 3, 4, 5, 6, 8, 10, 12, 18, and 24 h, and CH4 concentration was determined. The supernatants were analysed for individual volatile fatty acids (VFA) concentrations, and NH3-N. The solid residue was analysed for total N and neutral detergent insoluble N. Another set of duplicates was incubated for 4 h for VFA and NH3-N determination. The HS produced more gas (218 vs. 204 mL/g OM), tended to increase total VFA production (52.0 mM vs. 49.5 mM at 24 h), reduced the acetate:propionate ratio (2.52 vs. 3.20 at 4 h and 2.85 vs. 3.19 at 24 h) and CH4 production relative to total gas production (15.6 vs. 16.8 mL/100 mL) and, improved N use efficiency (22.1 vs. 20.9). The contrasting chemical composition modified in vitro rumen fermentation tending to increase total VFA production, reduce the acetate:propionate ratio and CH4 concentration, and improve N use efficiency through lower rumen NH3-N.

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Ming Du ◽  
Wenzhong Zhang ◽  
Jiping Gao ◽  
Meiqiu Liu ◽  
Yan Zhou ◽  
...  

Although nitrogen (N), phosphorus (P), and potassium (K) co-application improves crop growth, yield, and N use efficiency (NUE) of rice, few studies have investigated the mechanisms underlying these interactions. To investigate root morphological and physiological characteristics and determine yield and nitrogen use parameters, rhizo-box experiments were performed on rice using six treatments (no fertilizer, PK, N, NK, NP, and NPK) and plants were harvested at maturity. The aboveground biomass at the elongating stage and grain yield at maturity for NPK treatment were higher than the sum of PK and N treatments. N, P, and K interactions enhanced grain yield due to an increase in agronomic N use efficiency (NAE). The co-application of N, P, and K improved N uptake and N recovery efficiency, exceeding the decreases in physiological and internal NUE and thereby improving NAE. Increases in root length and biomass, N uptake per unit root length/root biomass, root oxidation activity, total roots absorption area, and roots active absorption area at the elongating stage improved N uptake via N, P, and K interactions. The higher total N uptake from N, P, and K interactions was due to improved root characteristics, which enhanced the rice yield and NUE.


2021 ◽  
Vol 18 (16) ◽  
pp. 4841-4853
Author(s):  
Vincent Niderkorn ◽  
Annette Morvan-Bertrand ◽  
Aline Le Morvan ◽  
Angela Augusti ◽  
Marie-Laure Decau ◽  
...  

Abstract. The aim of this study was to analyze changes in botanical and chemical composition, as well as in vitro rumen fermentation characteristics of an upland grassland exposed to climate changes in controlled CO2 concentration, air temperature and precipitation conditions. Grassland was exposed to a future climate scenario coupled with CO2 treatments (390 and 520 ppm) from the beginning of spring. During summer, an extreme climatic event (ECE; 2 weeks of a +6 ∘C increase in temperature, together with severe drought) was applied and then followed by a recovery period. Three cutting dates were considered, i.e. in April, June and November. The results indicate that increases in greenness, nitrogen (N) content and changes in water-soluble carbohydrate profile in association with botanical composition changes for the November cut lead to higher in vitro dry matter degradability (IVDMD) in the rumen. The neutral detergent fiber : nitrogen (NDF:N) ratio appeared to be a key driver of forage quality, which was affected in opposite ways by elevated CO2 and ECE, with a strong impact on rumen fermentation. Atmospheric CO2 concentration in interaction with ECE tended to affect IVDMD, indicating that the effects of elevated CO2 and ECE may partly offset each other. Our findings indicate that the various factors of climate change need to be considered together in order to properly characterize their effects on forage quality and use by ruminants.


2001 ◽  
Vol 1 ◽  
pp. 407-414 ◽  
Author(s):  
Scott X. Chang ◽  
Daniel J. Robison

Screening and selecting tree genotypes that are responsive to N additions and that have high nutrient use efficiencies can provide better genetic material for short-rotation plantation establishment. A pot experiment was conducted to test the hypotheses that (1) sweetgum (Liquidambar styraciflua L.) families have different patterns in biomass production and allocation, N uptake, and N use efficiency (NUE), because of their differences in growth strategies, and (2) sweetgum families that are more responsive to N additions will also have greater nutrient use efficiencies. Seedlings from two half-sib families (F10022 and F10023) that were known to have contrasting responses to fertility and other stress treatments were used for an experiment with two levels of N (0 vs. 100 kg N/ha equivalent) and two levels of P (0 vs. 50 kg P/ha equivalent) in a split-plot design. Sweetgum seedlings responded to N and P treatments rapidly, with increases in both size and biomass production, and those responses were greater with F10023 than with F10022. Growth response to N application was particularly strong. N and P application increased the proportional allocation of biomass to leaves. Under increased N supply, P application increased foliar N concentration and content, as well as total N uptake by the seedlings. However, NUE was decreased by N addition and was higher in F10023 than in F10022 when P was not limiting. A better understanding of genotype by fertility interactions is important in selecting genotypes for specific site conditions and for optimizing nutrient use in forestry production.


1991 ◽  
Vol 71 (4) ◽  
pp. 997-1009 ◽  
Author(s):  
C. A. Grant ◽  
L. E. Gauer ◽  
L. D. Bailey ◽  
D. T. Gehl

In a 3-yr field experiment, six barley cultivars — one conventional height malting type, two semidwarf, two conventional height, and one short feed type — were grown at three sites, with six nitrogen application rates ranging from 0 to 200 kg ha−1, to determine the effects of cultivar and N level on N utilization under varying moisture conditions. Nine site-years of data were divided into three levels, low, moderate, and high, based on estimated moisture supply. As moisture level increased, protein concentration of the barley cultivars decreased, while protein yield and total N uptake increased. Cultivars with higher grain yield tended to be lower in protein concentration, but higher in protein yield, total N uptake and N use efficiency than those with lower grain yields. Differences among the cultivars in protein concentration were greater at low than high moisture levels, while differences due to N application were greater at high than low moisture levels. Within the range of N applied, nitrogen use efficiency decreased at high N levels under low and moderate moisture conditions, but was relatively constant at high moisture levels. Protein concentration response to N applications differed slightly among cultivars at all moisture levels, but cultivar by N level interactions in protein yield response only occurred under high moisture conditions. Cultivars respond similarly to N applications in terms of straw N concentration, total N uptake and N use efficiency. Key words: N, nitrogen, barley (Hordeum vulgare), moisture, protein, N use efficiency


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 313 ◽  
Author(s):  
Lukas Prey ◽  
Moritz Germer ◽  
Urs Schmidhalter

Fungicide intensity and sowing time influence the N use efficiency (NUE) of winter wheat but the underlying mechanisms, interactions of plant traits, and the temporal effects are not sufficiently understood. Therefore, organ-specific responses in NUE traits to fungicide intensity and earlier sowing were compared at two nitrogen (N) levels for six winter wheat cultivars in 2017. Plants were sampled at anthesis and at maturity and separated into chaff, grain, culms, and three leaf layers to assess their temporal contribution to aboveground dry matter (DM) and N uptake (Nup). Compared to the control treatment, across cultivars, the treatment without fungicide mostly exerted stronger and inverse effects than early sowing, on grain yield (GY, −12% without fungicide, +8% n.s. for early sowing), grain Nup (GNup, −9% n.s., +5% n.s.) as well as on grain N concentration (+4%, −2% n.s.). Grain yield in the treatment without fungicide was associated with similar total DM, as observed in the control treatment but with lower values in harvest index, thousand kernel weight, N use efficiency for GY (NUE) and N utilization efficiency. Lower GNup was associated with similar vegetative N uptake but lower values in N translocation efficiency and N harvest index. In contrast, early sowing tended to increase total DM at anthesis and maturity as well as post-anthesis assimilation, at similar harvest index and increased the number of grains per spike and total N use efficiency. Total N uptake increased after the winter season but was similar at anthesis. Although the relative N response in many traits was lower without fungicide, few fungicide x interactions were significant, and the sowing date did not interact either with N fertilization for any of the N and DM traits. The results demonstrate the positive effects of fungicides and earlier sowing on various traits related to yield formation and the efficient use of nitrogen and are discussed based on various concepts.


2014 ◽  
Vol 94 (5) ◽  
pp. 867-880
Author(s):  
William N. MacDonald ◽  
M. James Tsujita ◽  
Theo J. Blom ◽  
Barry J. Shelp

MacDonald, W. N., Tsujita, M. J., Blom, T. J. and Shelp, B. J. 2014. Impact of [Formula: see text]:[Formula: see text] ratio and nitrogen supply on nitrogen remobilization in potted chrysanthemum grown in a subirrigation system. Can. J. Plant Sci. 94: 867–880. Subirrigation is being adopted as an environmentally friendly strategy for managing the nutrition of potted greenhouse plants. Here, we investigated two strategies for enhancing the remobilization of N during the development of the inflorescence in subirrigated potted chrysanthemum (Chrysanthemum morifolium Ramat.) in an attempt to improve nitrogen (N) use efficiency. (1) The replacement of a portion of the nitrate in the nutrient solution with ammonium decreased the nitrate content, especially in the stem plus petioles, and increased the reduced N content early in the growth cycle, but did not improve N use efficiency. (2) The use of a lower N supply (200 vs. 400 mg total N per pot delivered over 3 and 5 wk, respectively), either as nitrate or ammonium nitrate, eliminated nitrate accumulation prior to inflorescence development, thereby improving N use efficiency. Inflorescence quality was unaffected; however, at the lower N level there was some evidence of chlorosis on the oldest leaves. Thus, there may be considerable potential to reduce the N supply in a commercial greenhouse setting as long as an adequate supply is provided early in the growing period.


2018 ◽  
Vol 3 (4) ◽  
pp. 454-461
Author(s):  
Md Rafiqul Islam ◽  
Mahthir Been Mohammad ◽  
Mst Tazmin Akhter ◽  
Md Moyeed Hasan Talukder ◽  
Kawsar Hossen

An experiment was conducted at the Soil Science Field Laboratory of Bangladesh Agricultural University, Mymensingh during boro season of 2016 to evaluate the effect of deep placement of nitrogen (N) fertilizers on N use efficiency and yield of BRRI dhan29 under continuous flooded condition. The soil was silt loam in texture having pH 6.27, organic matter content 1.95%, total N 0.136%, available P 3.16 ppm, exchangeable K 0.095 me%, available S 10.5 ppm and EC 348 μS cm-1. The experiment was laid out in a Randomized Complete Block Design (RCBD) with eight treatments and three replications. The treatments were T1 [Control], T2 [Prilled Urea, 130 kg N ha-1] , T3 [USG, 130 kg N ha-1], T4 [USG, 104 kg N ha-1], T5 [USG, 78 kg N ha-1], T6 [NPK briquette , 129 kg N ha-1], T7 [NPK briquette, 102 kg N ha-1] and T8 [NPK briquette, 78 kg N ha-1]. All the treatments except T6, T7 and T8 received 25 kg P and 64 kg K ha-1 as TSP and MoP, respectively. In T6, T7 and T8 treatments, P and K were supplied from NPK briquettes. Prilled urea was applied in three equal splits. USG and NPK briquettes were applied at 10 DAT and were placed at 8-10 cm depth between four hills at every alternate row. The results demonstrate that all the yield components except 1000-grain weight and yields of BRRI dhan29 responded significantly to the deep placement of N in the form of USG and NPK briquettes under continuous flooded condition. The highest grain yield of 6561 kg ha-1 was recorded in T3 [USG, 130 kg N ha-1] which was statistically similar to that ofT4 [USG, 104 kg N ha-1].The highest straw yield of 6876 kg ha-1 was obtained in T3 [USG, 130 kg N ha-1]. The lowest grain yield (3094 kg ha-1) and straw yield (3364 kg ha-1) were found for T1 (Control). The deep placement of USG and NPK briquettes enhanced the recovery of applied N and N use efficiency in comparison with the broadcast application of PU. The highest value of NUE (32.05 kg grain increase per kg N applied) was obtained in T5 [USG, 78 kg N ha-1] followed by T4 [30.75 kg grain increase per kg N applied) and the lowest value was found in T8 [130 kg N ha-1 from PU]. Based on yield, N use efficiency and cost-benefit analysis, an application of 104 kg N ha-1 as USG can be recommended as the best treatment for achieving satisfactory yield of boro rice (cv. BRRI dhan29) at BAU farm and at adjacent areas under AEZ 9 (Old Brahmaputra Floodplain).Asian J. Med. Biol. Res. December 2017, 3(4): 454-461


2002 ◽  
Vol 82 (4) ◽  
pp. 457-467 ◽  
Author(s):  
S P Mooleki ◽  
J J Schoenau ◽  
G. Hultgreen ◽  
G. Wen ◽  
J L Charles

A study was initiated in the fall of 1996 in the Black soil zone in east-central Saskatchewan (parkland region) to examine the soil and crop response to application of liquid swine manure at different rates, frequencies and methods of application. Low, medium and high rates of liquid swine manure (equivalent to approximately 100, 200 and 400 kg total N ha-1, respectively) were applied annually and in reduced frequency applications using injection and broadcast/incorporated placement over a 4-yr period. Crops grown during this period were Argentine canola (Brassica napus L.) in 1997, hard red spring wheat (Triticum aestivum L.) in 1998, hulless barley (Hordeum vulgare L.) in 1999, and Argentine canola in 2000. Under an annual application regime, a significant elevation of pre-seeding available N in the 0–60 cm soil depth and increased grain yield and protein content with increasing application rates of liquid swine manure were observed. Under a reduced frequency application regime, elevation of pre-seeding available N, grain yield and protein content observed in the year of application declined in the second year, and were significantly diminished by the third year. Cumulative N use efficiency (NUE) was highest (50–60%) for low annual application and lowest (10–30%) for high annual application rates that were injected. Generally, injection of liquid swine manure into the soil resulted in better enhancement of pre-seeding available N, higher grain yield and protein content, and better NUE than broadcasting and incorporation. Type of opener used to inject swine manure had no significant effect on either crop response or available N. This study showed that in the Black soil zone of the parkland region of Saskatchewan, annual application of low to medium rates (100 to 200 kg total N ha-1) of liquid swine manure are sufficient for high grain yield and grain protein, without leaving excess nitrates in the soil. In contrast, annual application of high rates (400 kg total N ha-1) of liquid swine manure has no agronomic advantage over the lower rates, but may result in higher residual nitrates in the soil, increasing potential for environmental pollution. Key words: Swine manure, N availability, manure management, N use efficiency


1970 ◽  
Vol 33 (3) ◽  
pp. 439-448 ◽  
Author(s):  
MA Khaleque ◽  
NK Paul ◽  
Craig A Meisner

Wheat (Triticum aestivum L.) was planted as winter crop using raised bed and conventional planting system with four N levels at Regional Wheat Research Station, Rajshahi (latitude 28°75′ N and longitude 92°58′ E), during November to March in 2002 and 2003 to study N content in grain and straw, uptake of total nitrogen, N use efficiency, fertilizer recovery percentage and grain yield. The highest N content in grain and straw were obtained from bed planting system with Shatabdi at 150% N treatment. Maximum total N uptake by the plants was found in bed elevation as compared to conventional planting system. The highest N use efficiency was observed at N zero treatment as compared to applied N levels. Shatabdi noticed highest N use efficiency among the crop varieties. The maximum fertilizer recovery percentage was noted in Shatabdi under bed planting system. The highest grain yield (2,555 kg/ha) was produced from bed planting system. Significantly the highest grain yield (2,929 kg/ha) was found in Shatabdi. The highest grain yield (3,746 kg/ha) was found when 150% N was applied. In bed planting system, the highest grain yield (3,323 kg/ha) was produced when 150% N was applied. The lowest grain yield (1,177 kg/ha) was obtained in zero N treatment. Among the varieties, Shatabdi was the best performer in bed planting system due to maximum nitrogen and protein content in grain and straw, maximum N use efficiency and fertilizer recovery percentage. Key Words: Bed planting, N content, N use efficiency and fertilizer recovery percentage. doi:10.3329/bjar.v33i3.1603 Bangladesh J. Agril. Res. 33(3) : 439-448, September 2008


Sign in / Sign up

Export Citation Format

Share Document