scholarly journals Yield and N use efficiency of wheat as influenced by bed planting and N application

1970 ◽  
Vol 33 (3) ◽  
pp. 439-448 ◽  
Author(s):  
MA Khaleque ◽  
NK Paul ◽  
Craig A Meisner

Wheat (Triticum aestivum L.) was planted as winter crop using raised bed and conventional planting system with four N levels at Regional Wheat Research Station, Rajshahi (latitude 28°75′ N and longitude 92°58′ E), during November to March in 2002 and 2003 to study N content in grain and straw, uptake of total nitrogen, N use efficiency, fertilizer recovery percentage and grain yield. The highest N content in grain and straw were obtained from bed planting system with Shatabdi at 150% N treatment. Maximum total N uptake by the plants was found in bed elevation as compared to conventional planting system. The highest N use efficiency was observed at N zero treatment as compared to applied N levels. Shatabdi noticed highest N use efficiency among the crop varieties. The maximum fertilizer recovery percentage was noted in Shatabdi under bed planting system. The highest grain yield (2,555 kg/ha) was produced from bed planting system. Significantly the highest grain yield (2,929 kg/ha) was found in Shatabdi. The highest grain yield (3,746 kg/ha) was found when 150% N was applied. In bed planting system, the highest grain yield (3,323 kg/ha) was produced when 150% N was applied. The lowest grain yield (1,177 kg/ha) was obtained in zero N treatment. Among the varieties, Shatabdi was the best performer in bed planting system due to maximum nitrogen and protein content in grain and straw, maximum N use efficiency and fertilizer recovery percentage. Key Words: Bed planting, N content, N use efficiency and fertilizer recovery percentage. doi:10.3329/bjar.v33i3.1603 Bangladesh J. Agril. Res. 33(3) : 439-448, September 2008

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Ming Du ◽  
Wenzhong Zhang ◽  
Jiping Gao ◽  
Meiqiu Liu ◽  
Yan Zhou ◽  
...  

Although nitrogen (N), phosphorus (P), and potassium (K) co-application improves crop growth, yield, and N use efficiency (NUE) of rice, few studies have investigated the mechanisms underlying these interactions. To investigate root morphological and physiological characteristics and determine yield and nitrogen use parameters, rhizo-box experiments were performed on rice using six treatments (no fertilizer, PK, N, NK, NP, and NPK) and plants were harvested at maturity. The aboveground biomass at the elongating stage and grain yield at maturity for NPK treatment were higher than the sum of PK and N treatments. N, P, and K interactions enhanced grain yield due to an increase in agronomic N use efficiency (NAE). The co-application of N, P, and K improved N uptake and N recovery efficiency, exceeding the decreases in physiological and internal NUE and thereby improving NAE. Increases in root length and biomass, N uptake per unit root length/root biomass, root oxidation activity, total roots absorption area, and roots active absorption area at the elongating stage improved N uptake via N, P, and K interactions. The higher total N uptake from N, P, and K interactions was due to improved root characteristics, which enhanced the rice yield and NUE.


2018 ◽  
Vol 3 (4) ◽  
pp. 454-461
Author(s):  
Md Rafiqul Islam ◽  
Mahthir Been Mohammad ◽  
Mst Tazmin Akhter ◽  
Md Moyeed Hasan Talukder ◽  
Kawsar Hossen

An experiment was conducted at the Soil Science Field Laboratory of Bangladesh Agricultural University, Mymensingh during boro season of 2016 to evaluate the effect of deep placement of nitrogen (N) fertilizers on N use efficiency and yield of BRRI dhan29 under continuous flooded condition. The soil was silt loam in texture having pH 6.27, organic matter content 1.95%, total N 0.136%, available P 3.16 ppm, exchangeable K 0.095 me%, available S 10.5 ppm and EC 348 μS cm-1. The experiment was laid out in a Randomized Complete Block Design (RCBD) with eight treatments and three replications. The treatments were T1 [Control], T2 [Prilled Urea, 130 kg N ha-1] , T3 [USG, 130 kg N ha-1], T4 [USG, 104 kg N ha-1], T5 [USG, 78 kg N ha-1], T6 [NPK briquette , 129 kg N ha-1], T7 [NPK briquette, 102 kg N ha-1] and T8 [NPK briquette, 78 kg N ha-1]. All the treatments except T6, T7 and T8 received 25 kg P and 64 kg K ha-1 as TSP and MoP, respectively. In T6, T7 and T8 treatments, P and K were supplied from NPK briquettes. Prilled urea was applied in three equal splits. USG and NPK briquettes were applied at 10 DAT and were placed at 8-10 cm depth between four hills at every alternate row. The results demonstrate that all the yield components except 1000-grain weight and yields of BRRI dhan29 responded significantly to the deep placement of N in the form of USG and NPK briquettes under continuous flooded condition. The highest grain yield of 6561 kg ha-1 was recorded in T3 [USG, 130 kg N ha-1] which was statistically similar to that ofT4 [USG, 104 kg N ha-1].The highest straw yield of 6876 kg ha-1 was obtained in T3 [USG, 130 kg N ha-1]. The lowest grain yield (3094 kg ha-1) and straw yield (3364 kg ha-1) were found for T1 (Control). The deep placement of USG and NPK briquettes enhanced the recovery of applied N and N use efficiency in comparison with the broadcast application of PU. The highest value of NUE (32.05 kg grain increase per kg N applied) was obtained in T5 [USG, 78 kg N ha-1] followed by T4 [30.75 kg grain increase per kg N applied) and the lowest value was found in T8 [130 kg N ha-1 from PU]. Based on yield, N use efficiency and cost-benefit analysis, an application of 104 kg N ha-1 as USG can be recommended as the best treatment for achieving satisfactory yield of boro rice (cv. BRRI dhan29) at BAU farm and at adjacent areas under AEZ 9 (Old Brahmaputra Floodplain).Asian J. Med. Biol. Res. December 2017, 3(4): 454-461


2002 ◽  
Vol 82 (4) ◽  
pp. 457-467 ◽  
Author(s):  
S P Mooleki ◽  
J J Schoenau ◽  
G. Hultgreen ◽  
G. Wen ◽  
J L Charles

A study was initiated in the fall of 1996 in the Black soil zone in east-central Saskatchewan (parkland region) to examine the soil and crop response to application of liquid swine manure at different rates, frequencies and methods of application. Low, medium and high rates of liquid swine manure (equivalent to approximately 100, 200 and 400 kg total N ha-1, respectively) were applied annually and in reduced frequency applications using injection and broadcast/incorporated placement over a 4-yr period. Crops grown during this period were Argentine canola (Brassica napus L.) in 1997, hard red spring wheat (Triticum aestivum L.) in 1998, hulless barley (Hordeum vulgare L.) in 1999, and Argentine canola in 2000. Under an annual application regime, a significant elevation of pre-seeding available N in the 0–60 cm soil depth and increased grain yield and protein content with increasing application rates of liquid swine manure were observed. Under a reduced frequency application regime, elevation of pre-seeding available N, grain yield and protein content observed in the year of application declined in the second year, and were significantly diminished by the third year. Cumulative N use efficiency (NUE) was highest (50–60%) for low annual application and lowest (10–30%) for high annual application rates that were injected. Generally, injection of liquid swine manure into the soil resulted in better enhancement of pre-seeding available N, higher grain yield and protein content, and better NUE than broadcasting and incorporation. Type of opener used to inject swine manure had no significant effect on either crop response or available N. This study showed that in the Black soil zone of the parkland region of Saskatchewan, annual application of low to medium rates (100 to 200 kg total N ha-1) of liquid swine manure are sufficient for high grain yield and grain protein, without leaving excess nitrates in the soil. In contrast, annual application of high rates (400 kg total N ha-1) of liquid swine manure has no agronomic advantage over the lower rates, but may result in higher residual nitrates in the soil, increasing potential for environmental pollution. Key words: Swine manure, N availability, manure management, N use efficiency


2006 ◽  
Vol 144 (1) ◽  
pp. 69-83 ◽  
Author(s):  
DILLIP KUMAR SWAIN ◽  
BURLA CHANDRA BHASKAR ◽  
PRAMILA KRISHNAN ◽  
KURKURI SRINIVASA RAO ◽  
SANGRAM KESHARI NAYAK ◽  
...  

Field experiments were conducted at the village Kasiadihi, Dhenkanal district, Orissa, India during wet seasons 2001, 2002 and 2003 under non water-stressed conditions (0–25 cm standing water) to assess variability in N uptake and utilization by medium and late duration rice varieties. The N rates were 0, 40, 80 and 120 kg N/ha applied as urea in four equal splits at transplanting, active tiller initiation, panicle initiation and flowering stages. The grain yield response was up to 80 kg N/ha. The optimum grain yield attainable by the efficient medium duration varieties was 4·5 t/ha. The N efficient late duration varieties produced optimum grain yield of 5·8 t/ha. The relationship for total dry matter and grain yield production between N fertilized (40, 80 and 120 kg N/ha) and non-fertilized treatments were all significant, suggesting cultivar selection under optimum N fertilized conditions. The difference in optimum yield of the medium and late duration varieties was due to the differences in the amount of N uptake and its use efficiency by the plant for grain production. There was a curvilinear relationship between grain yield and N use efficiency for grain production. The relationship between N use efficiency for grain production and N contents of leaf, stem and grain at maturity was quadratic. The optimum plant N use efficiency of medium duration varieties was 49 kg grain/kg N uptake, achieved with leaf, stem and grain N contents of 10, 8 and 14 g/kg, respectively, at maturity. For late duration varieties, the optimum plant N use efficiency was 68 kg grain/kg N uptake and it was maintained with leaf and stem N content of 4·0 g/kg each and grain N content of 9·0 g/kg at maturity. The N content in plant organs could be the selection guide used to obtain efficient rice varieties.


2013 ◽  
Vol 148 ◽  
pp. 15-23 ◽  
Author(s):  
Jianquan Qin ◽  
S.M. Impa ◽  
Qiyuan Tang ◽  
Shenghai Yang ◽  
Jian Yang ◽  
...  

2001 ◽  
Vol 36 (5) ◽  
pp. 757-764 ◽  
Author(s):  
Luís Sangoi ◽  
Márcio Ender ◽  
Altamir Frederico Guidolin ◽  
Milton Luiz de Almeida ◽  
Valmor Antônio Konflanz

Genetic selection of maize hybrids is often conducted using high N rates during the breeding cycle. This procedure may either lead to the release of genotypes that present nitrogen luxury consumption or require a stronger N input to accomplish their yield potential. This work was carried out to evaluate the effects of N rates on grain yield and N use efficiency of hybrids cultivated in different decades in Southern Brazil. The trial was performed in Lages, Santa Catarina State. A split plot design was used. Hybrids Ag 12, Ag 28, Ag 303 and Ag 9012, released during the 60's, 70's, 80's and 90's, respectively, were evaluated in the main plots. Nitrogen rates equivalent to 0, 50, 100 and 200 kg ha-1 were side-dressed in the split-plots when each hybrid had six fully expanded leaves. Modern-day hybrid Ag 9012 had higher grain yield than hybrids of earlier eras, regardless of N rates. Under high doses of N, the older hybrids Ag 12 and Ag 28 took up more N and presented higher values of shoot dry matter at flowering than Ag 9012. Nonetheless, they set less grains per ear which contributed to decrease their grain yield and N use efficiency.


2001 ◽  
Vol 1 ◽  
pp. 407-414 ◽  
Author(s):  
Scott X. Chang ◽  
Daniel J. Robison

Screening and selecting tree genotypes that are responsive to N additions and that have high nutrient use efficiencies can provide better genetic material for short-rotation plantation establishment. A pot experiment was conducted to test the hypotheses that (1) sweetgum (Liquidambar styraciflua L.) families have different patterns in biomass production and allocation, N uptake, and N use efficiency (NUE), because of their differences in growth strategies, and (2) sweetgum families that are more responsive to N additions will also have greater nutrient use efficiencies. Seedlings from two half-sib families (F10022 and F10023) that were known to have contrasting responses to fertility and other stress treatments were used for an experiment with two levels of N (0 vs. 100 kg N/ha equivalent) and two levels of P (0 vs. 50 kg P/ha equivalent) in a split-plot design. Sweetgum seedlings responded to N and P treatments rapidly, with increases in both size and biomass production, and those responses were greater with F10023 than with F10022. Growth response to N application was particularly strong. N and P application increased the proportional allocation of biomass to leaves. Under increased N supply, P application increased foliar N concentration and content, as well as total N uptake by the seedlings. However, NUE was decreased by N addition and was higher in F10023 than in F10022 when P was not limiting. A better understanding of genotype by fertility interactions is important in selecting genotypes for specific site conditions and for optimizing nutrient use in forestry production.


1991 ◽  
Vol 71 (4) ◽  
pp. 997-1009 ◽  
Author(s):  
C. A. Grant ◽  
L. E. Gauer ◽  
L. D. Bailey ◽  
D. T. Gehl

In a 3-yr field experiment, six barley cultivars — one conventional height malting type, two semidwarf, two conventional height, and one short feed type — were grown at three sites, with six nitrogen application rates ranging from 0 to 200 kg ha−1, to determine the effects of cultivar and N level on N utilization under varying moisture conditions. Nine site-years of data were divided into three levels, low, moderate, and high, based on estimated moisture supply. As moisture level increased, protein concentration of the barley cultivars decreased, while protein yield and total N uptake increased. Cultivars with higher grain yield tended to be lower in protein concentration, but higher in protein yield, total N uptake and N use efficiency than those with lower grain yields. Differences among the cultivars in protein concentration were greater at low than high moisture levels, while differences due to N application were greater at high than low moisture levels. Within the range of N applied, nitrogen use efficiency decreased at high N levels under low and moderate moisture conditions, but was relatively constant at high moisture levels. Protein concentration response to N applications differed slightly among cultivars at all moisture levels, but cultivar by N level interactions in protein yield response only occurred under high moisture conditions. Cultivars respond similarly to N applications in terms of straw N concentration, total N uptake and N use efficiency. Key words: N, nitrogen, barley (Hordeum vulgare), moisture, protein, N use efficiency


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 313 ◽  
Author(s):  
Lukas Prey ◽  
Moritz Germer ◽  
Urs Schmidhalter

Fungicide intensity and sowing time influence the N use efficiency (NUE) of winter wheat but the underlying mechanisms, interactions of plant traits, and the temporal effects are not sufficiently understood. Therefore, organ-specific responses in NUE traits to fungicide intensity and earlier sowing were compared at two nitrogen (N) levels for six winter wheat cultivars in 2017. Plants were sampled at anthesis and at maturity and separated into chaff, grain, culms, and three leaf layers to assess their temporal contribution to aboveground dry matter (DM) and N uptake (Nup). Compared to the control treatment, across cultivars, the treatment without fungicide mostly exerted stronger and inverse effects than early sowing, on grain yield (GY, −12% without fungicide, +8% n.s. for early sowing), grain Nup (GNup, −9% n.s., +5% n.s.) as well as on grain N concentration (+4%, −2% n.s.). Grain yield in the treatment without fungicide was associated with similar total DM, as observed in the control treatment but with lower values in harvest index, thousand kernel weight, N use efficiency for GY (NUE) and N utilization efficiency. Lower GNup was associated with similar vegetative N uptake but lower values in N translocation efficiency and N harvest index. In contrast, early sowing tended to increase total DM at anthesis and maturity as well as post-anthesis assimilation, at similar harvest index and increased the number of grains per spike and total N use efficiency. Total N uptake increased after the winter season but was similar at anthesis. Although the relative N response in many traits was lower without fungicide, few fungicide x interactions were significant, and the sowing date did not interact either with N fertilization for any of the N and DM traits. The results demonstrate the positive effects of fungicides and earlier sowing on various traits related to yield formation and the efficient use of nitrogen and are discussed based on various concepts.


2016 ◽  
Vol 96 (3) ◽  
pp. 392-403 ◽  
Author(s):  
Dilip K. Biswas ◽  
Bao-Luo Ma

A two-year (2010–2011) field experiment was undertaken to examine the effect of nitrogen (N) rate (0, 100, 150, and 200 kg N ha−1) and N source (urea, calcium ammonium nitrate; ammonium sulphate) on canopy reflectance, chlorophyll pigments, photosynthesis, yield, grain quality, and N-use efficiency in corn. However, the physiological observations were made only in 2011. We found that stover biomass was unaffected by higher N rate beyond 150 kg N ha−1 in both years. Higher N rates did not provide a yield advantage as compared to 150 kg N ha−1 in 2010, but the highest grain yield was produced with 200 kg N ha−1 in 2011. The higher grain yield by N application was attributed to a greater kernel size in both years. Corn stover [N] was found to increase with increasing N rates in both years. Kernel [N] only responded to the high N rate in 2010. There was no change in the kernel density as affected by N rate in both years. An increased N addition resulted in a decrease in both N-uptake efficiency and agronomic-N use efficiency in both years. There was an inconsistent effect of N source on yield and N use efficiency indices in the corn over two years.


Sign in / Sign up

Export Citation Format

Share Document