scholarly journals Fermented Feed Supplement Relieves Caecal Microbiota Dysbiosis and Kidney Injury Caused by High-Protein Diet in the Development of Gosling Gout

Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2139
Author(s):  
Yumeng Xi ◽  
Yuanpi Huang ◽  
Ying Li ◽  
Junshu Yan ◽  
Zhendan Shi

Firstly, forty-eight 1-day-old goslings were randomly allocated to four groups and were fed diets containing crude protein (CP) at different concentrations: 160, 180, 200, and 220 g/kg in Experiment One. We found a dose-dependent relationship between the dietary protein levels and morbidity of gosling gout. The concentration of serum uric acid (UA), creatinine (Cr), and urea nitrogen (UN), and the activity of xanthine oxidase in the 220CP groups were significantly higher than those in the low-protein diet groups. Beneficial microbes, including Akkermansia, Lactococcus, and Butyricicoccus were enriched in the ceca of healthy goslings, while the microbes Enterococcus, Enterobacteriaceae, and Bacteroides were enriched in those with gout. Then, we explored the effects of fermented feed on gosling gout caused by high-protein diets in Experiment Two. A total of 720 1-day-old goslings were randomly allotted to four experimental groups: CN (162.9 g/kg CP), CNF (167.5 g/kg CP, replacing 50 g/kg of the basal diet with fermented feed), HP (229.7 g/kg CP, a high-protein diet), and HPF (230.7 g/kg CP, replacing 50 g/kg of the high-protein diet with fermented feed). We found that the cumulative incidence of gout increased in the HP group compared with that in the control, but decreased in the HPF group compared to that in the HP group. Similarly, the concentration of serum UA in the HP group was higher than that in the CN group, but decreased in the HPF group. Meanwhile, compared with the HP group, using fermented feed in diets decreased the abundance of Enterococcus in the ceca of goslings, while increasing the abundance of Lactobacillus. These results suggest that appropriate dietary protein levels and the fermented feed supplement might relieve the kidney injury and gut microbiota dysbiosis caused by high-protein diets in the development of gosling gout.

2021 ◽  
Vol 17 (4) ◽  
pp. 393-400
Author(s):  
M. V. Altashina ◽  
E. V. Ivannikova ◽  
E. A. Troshina

The nature of human nutrition has become increasingly important as an effective element in the prevention and treatment of many pathologies, especially obesity, type 2 diabetes and cardiovascular diseases. High protein diets are some of the most popular eating patterns and the Dukan diet has taken the lead in popularity among the diets of this type. An increase of protein in the diet is effective in reducing body weight, primarily due to the loss of adipose tissue, without a significant effect on muscle mass. Another advantage of a high-protein diet is earlier and longer satiety compared to other diets, which makes it comfortable for use. Besides obesity, high protein diets are presumably effective for treating such diseases as nonalcoholic fatty liver disease, diabetes mellitus and cardiovascular diseases However, despite the important advantages, this nutritional model is not universal and is contraindicated in patients with diseases of liver, kidneys and osteoporosis. Besides, the prolonged use of a high protein diet may increase the risks of urolithiasis and reduced mineral bone density even for healthy individuals. Thus, the increase in the proportion of protein in the diet should take place exclusively under the supervision of a physician.


2020 ◽  
Vol 8 (11) ◽  
pp. 1735
Author(s):  
Hanlu Zhang ◽  
Nikkie van der Wielen ◽  
Bart van der Hee ◽  
Junjun Wang ◽  
Wouter Hendriks ◽  
...  

In pigs, high protein diets have been related to post-weaning diarrhoea, which may be due to the production of protein fermentation metabolites that were shown to have harmful effects on the intestinal epithelium in vitro. In this review, we discussed in vivo effects of protein fermentation on the microbial composition and their protein catabolic activity as well as gut and overall health. The reviewed studies applied different dietary protein levels, which was assumed to result in contrasting fermentable protein levels. A general shift to N-utilisation microbial community including potential pathogens was observed, although microbial richness and diversity were not altered in the majority of the studies. Increasing dietary protein levels resulted in higher protein catabolic activity as evidenced by increased concentration of several protein fermentation metabolites like biogenic amines in the digesta of pigs. Moreover, changes in intestinal morphology, permeability and pro-inflammatory cytokine concentrations were observed and diarrhoea incidence was increased. Nevertheless, higher body weight and average daily gain were observed upon increasing dietary protein level. In conclusion, increasing dietary protein resulted in higher proteolytic fermentation, altered microbial community and intestinal physiology. Supplementing diets with fermentable carbohydrates could be a promising strategy to counteract these effects and should be further investigated.


1972 ◽  
Vol 23 (5) ◽  
pp. 859 ◽  
Author(s):  
GJ Faichney

The effect of formaldehyde treatment of peanut meal on the digestion of barley-peanut meal diets was studied in fistulated crossbred sheep at two peanut meal and therefore dietary protein levels. There were no differences either between protein levels or due to treatment in the overall digestion of organic matter, but more of this digestion took place in the stomach when the low protein diets were given. Dietary starch was completely digested. There was no effect of protein level or of formaldehyde treatment on the partition of starch digestion between the stomach and the intestines. About 10% of the dietary nitrogen disappeared from the stomach when the high protein diet containing untreated peanut meal was given; treatment resulted in a small net gain of nitrogen in the stomach. There was a net gain of nitrogen in the stomach when the low protein diets were given, the gain tending to be greater when the peanut meal was treated. When the meal was treated, there was a small but not significant increase (c. 2%) for the low protein diet and a substantial increase (c. 31 %) for the high protein diet in the amount of crude protein digested in the intestines per unit of digestible organic matter intake. Changes observed in the composition and flow of digesta and in plasma urea and cc-amino nitrogen levels are discussed in relation to the digestion of organic matter and protein.


1968 ◽  
Vol 46 (10) ◽  
pp. 1253-1260 ◽  
Author(s):  
R. A. Freedland

Although many enzymes are increased by either a high-protein diet or cortisol adminstration, there was no evidence of a glucocorticoid requirement for the high-protein mediated increases. This was particularly noticeable for enzymes markedly increased by feeding a high-protein diet. Neither adrenalectomy nor hypophysectomy prevented the diet-mediated increases, although in certain instances the responses were decreased. Many enzymes which were unaffected or decreased in the intact rat by feeding a high-protein diet had markedly different responses after endocrine removal. There did not appear to be a general or simple pattern of these altered responses. Therefore predictions on possible activity changes could not be made, except for those enzymes normally increased by a high-protein diet on the basis of metabolic function or hormonal effects. Possible hormonal controls of these changes in enzyme activity are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Tao ◽  
Bo Deng ◽  
Qizhi Yuan ◽  
Xiaoming Men ◽  
Jie Wu ◽  
...  

Low protein diets are commonly used in the growing-finishing pig stage of swine production; however, the effects of low dietary protein on the intestinal microbiota and their metabolites, and their association with pig sex, remain unclear. The present study aimed to assess the impact of a low crude protein (CP) diet on the gut microbiome and metabolome, and to reveal any relationship with sex. Barrows and gilts (both n = 24; initial body = 68.33 ± 0.881 kg) were allocated into two treatments according to sex. The four groups comprised two pairs of gilts and barrows fed with a high protein diet (CP 17% at stage I; CP 13% at stage II) and a low protein diet (CP 15% at stage I; CP 11% at stage II), respectively, for 51 d. Eight pigs in each group were slaughtered and their colon contents were collected. Intestinal microbiota and their metabolites were assessed using 16S rRNA sequencing and tandem mass spectrometry, respectively. The low protein diet increased intestinal microbiota species and richness indices (P < 0.05) in both sexes compared with the high protein diet. The sample Shannon index was different (P < 0.01) between barrows and gilts. At the genus level, unidentified Clostridiales (P < 0.05), Neisseria (P < 0.05), unidentified Prevotellaceae (P < 0.01) and Gracilibacteria (P < 0.05) were affected by dietary protein levels. The relative abundance of unidentified Prevotellaceae was different (P < 0.01) between barrows and gilts. The influence of dietary protein levels on Neisseria (P < 0.05), unidentified Prevotellaceae (P < 0.01) and Gracilibacteria (P < 0.05) were associated with sex. Metabolomic profiling indicated that dietary protein levels mainly affected intestinal metabolites in gilts rather than barrows. A total of 434 differentially abundant metabolites were identified in gilts fed the two protein diets. Correlation analysis identified that six differentially abundant microbiota communities were closely associated with twelve metabolites that were enriched for amino acids, inflammation, immune, and disease-related metabolic pathways. These results suggested that decreasing dietary protein contents changed the intestinal microbiota in growing-finishing pigs, which selectively affected the intestinal metabolite profiles in gilts.


2019 ◽  
Vol 10 (4) ◽  
pp. 621-633 ◽  
Author(s):  
Samar Malaeb ◽  
Caitlin Bakker ◽  
Lisa S Chow ◽  
Anne E Bantle

ABSTRACT Diet has the potential to be a powerful and cost-effective tool for treatment of type 2 diabetes mellitus (T2D). High-protein diets have shown promise for this purpose. The objective of this systematic review was to evaluate whether high-protein diets improve glycemic outcomes in people with T2D. We conducted a systematic search of literature published prior to 1 February 2018 to find clinical studies of high-protein diet patterns for treatment of T2D in human participants. A high-protein diet was defined as a diet with protein content greater than that of a typical diet in the United States (>16% of total energy as protein). Studies were excluded if weight loss >5% occurred or if no glycemic outcomes were measured. A total of 21 independent articles met our criteria and were included. Most tested diets had a protein content of around 30% of total energy. Many studies supported the use of high-protein diets for patients with T2D, but were limited by small size (n = 8–32) and short duration (1–24 wk). Randomized controlled trials tended to be larger (n = 12–419) and longer (6 wk–2 y), and had mixed results, with many trials showing no difference between a high-protein diet and control. Many randomized controlled trials were limited by low compliance and high dropout rates >15%. There were no consistent beneficial or detrimental effects of high-protein diets on renal or cardiovascular outcomes. Evidence was insufficient to recommend 1 type of protein (plant or animal) over the other. Our review suggests that interventions to improve compliance with diet change over the long term may be equally important as specific macronutrient recommendations for treatment of T2D.


2001 ◽  
Vol 52 (7) ◽  
pp. 791
Author(s):  
L. Ma ◽  
F. R. Dunshea ◽  
Y. M. Brockwell ◽  
R. L. Inglis ◽  
D. J. Kingston ◽  
...  

Plasma hormone concentrations were measured in gilts after fasting, long-term protein restriction, or supplementation. In 11-week-old pigs fasted overnight, plasma insulin, glucagon, gastrin, urea, and glucose were increased 30 min after re-feeding (P < 0.05), whereas IGF-I did not change. In 16-week-old gilts fed a standard commercial diet [14.6% crude protein (CP)], or a high-protein diet (16.7% CP) for 4 weeks, the high-protein diet increased weight gain (13%; P < 0.05) and carcass weight (4%; P < 0.05), but did not alter plasma IGF-I, insulin, or glucagon. In 10-week-old gilts fed high-protein diets (19.4% and 18.3% CP), or low-protein diets (15.5% and 13.3% CP) for 12 weeks during the grower and finisher phases, respectively, the low-protein diet decreased weight gain (18%; P < 0.001) and carcass weight (11%; P < 0.01), with a marked increase in plasma glucagon (P < 0.05), no change in insulin, and only a trend towards decreased IGF-I (P = 0.1). The pigs were more sensitive to altered dietary protein at 10 weeks of age than at 16 weeks. Plasma IGF-I was not responsive to the short-term effects of feeding or the long-term effects of dietary protein. Glucagon could provide a useful marker for nutritional status in young pigs, provided that time of feeding is taken into account.


PEDIATRICS ◽  
1962 ◽  
Vol 29 (1) ◽  
pp. 90-96
Author(s):  
Oliver W. Vaughan ◽  
L. J. Filer ◽  
Helen Churella

One-day-old piglets were fed diets of either 50% or 14% protein for 8 weeks; they were given intravenous injections with S35-methionine-labeled plasma protein and were given a nonprotein diet. The plasma protein turnover and the nitrogen excreted were estimated by measuring the S35 activity and the nitrogen in aliquots of blood, urine and feces. During a 102-day period of protein privation, the animals that had received the high-protein diet lost little weight, while pigs previously fed a low level of protein lost 4.4 kg. However the high-protein group had a considerably faster rate of plasma protein turnover, catabolized a much large quantity of protein, and excreted more S35 and nitrogen than did the low-protein group. It is concluded that high-protein diets may make pigs less well able to cope with the stress of sudden protein deprivation.


1987 ◽  
Vol 35 (8) ◽  
pp. 897-907 ◽  
Author(s):  
A Martinez-Ramon ◽  
E Knecht ◽  
S Grisolía

Carbamoyl phosphate synthetase I (CPS-I) is the most abundant protein of rat liver mitochondria. Biochemical measurements in liver homogenates have shown that the liver from rats fed a high-protein diet contains more CPS-I per gram tissue protein than controls. However, there is no information on changes in the intact tissue at the cellular and mitochondrial level. Therefore, monoclonal antibodies to beef liver CPS-I were produced by the hybridoma technique. Four clones, C-241/1A, B, C, and D secreted immunogammaglobulin (IgG) IgG1. Using C-241/C, we measured by electron microscopy immunogold procedures the labeling of CPS-I in mitochondria from liver of rats fed high protein (casein, 50 and 80% of total food intake) diets. CPS-I (expressed as gold particles/micron2 of mitochondrial cross-sectional area) was greater than in mitochondria from control rats (20% casein diet), whether the rats were fed for 1, 6, or 14 months on the high-protein diets. The immunocytochemical measurements shown here demonstrate that the increase in the level of CPS-I in high-protein diets is a reflection of both the larger number of CPS-I molecules per mitochondrial area and the larger proportion of the total hepatocyte volume occupied by mitochondria. Similar measurements were carried out with glutamate dehydrogenase (GDH) using previously characterized monoclonal antibodies. No differences in GDH labeling were found with high-protein diets. Interestingly, when mitochondria from hepatocytes of rats fed a high-protein diet were divided into two subpopulations on the basis of mitochondrial cross-sectional size (i.e., greater or less than 0.7 micron2), the large mitochondria had 1.2 times more CPS-I and 0.8 times less GDH than the small mitochondria nearby.


1941 ◽  
Vol 74 (6) ◽  
pp. 591-600 ◽  
Author(s):  
H. Philipsborn ◽  
L. N. Katz ◽  
S. Rodbard

The effect of high and low protein diets were studied on fourteen dogs in twenty-four different experiments. In only two of these animals, both with moderate renal excretory failure, was a reversible rise in blood pressure elicited by a high protein diet. The possible mechanisms involved in meeting an increased excretory load are discussed.


Sign in / Sign up

Export Citation Format

Share Document