scholarly journals Economic Feasibility of Mixed-Species Grazing to Improve Rangeland Productivity

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1226
Author(s):  
Kayla Hintze ◽  
Courtney Bir ◽  
Derrell Peel

Pasture and grazing land in the southern and central Great Plains is being invaded by woody species, especially eastern redcedar. As a result of woody plant encroachment, cattle production on native rangeland is becoming less profitable because stocking rates must be decreased. Eastern redcedar encroachment can be controlled by grazing management, herbicide use, prescribed fire, mechanical control and mixed species grazing. This study utilizes traditional management practices, prescribed fire and three types of mixed species grazing operations to determine the most economically feasible way to manage redcedar encroachment on rangeland. The cost-benefit analysis in this study found that the source of redcedar management on rangeland with the highest net present value was the use of a breeding goat operation in which goats were grazed alongside cattle with the use of prescribed fire. This suggests that producers who are fighting redcedar encroachment will likely be able to implement a mixed species grazing operation with breeding goats to better manage their land and increase returns.

2021 ◽  
Vol 13 (7) ◽  
pp. 3698
Author(s):  
Salah Jellali ◽  
Yassine Charabi ◽  
Muhammad Usman ◽  
Abdullah Al-Badi ◽  
Mejdi Jeguirim

This work is intended to evaluate the technical, environmental, and economic feasibility of converting the sludge produced at an industrial estate’s wastewater treatment plant (WWTP) in Oman into energy through anaerobic digestion (AD). In this study, three different scenarios were analyzed. They concerned the digestion of the total amount of the produced sludge alone (240 m3 day−1) (scenario 1), and its co-digestion with wet agri-food wastes (AFW) at rates of two tonnes day−1 (scenario 2) and ten tonnes day−1 (scenario 3). Based on the analyses of sludge samples, an intensive literature review regarding sludge and AFW Physico-chemical and energetic characteristics and the use of the cost–benefit analysis (CBA) approach, it was found that, for the overall duration of the project (20 years), the AD of the sludge alone (scenario 1) permitted the production of 43.9 GWh of electricity, the reduction of greenhouse gas (GHG) emissions (more than 37,000 tonnes equivalent CO2 (TCO2)) and exhibited positive net present value (NPV: $393,483) and an internal return rate (IRR) of 19.4%. Co-digesting sludge with AFW significantly increased all of these key performance indicators. For instance, scenario 3 results in the recovery of electrical energy of 82.2 GWh and avoids the emission of 70,602 tCO2. Moreover, a higher NPV and IRR of $851,876 and 21.8%, respectively, and a payback period (PBP) of only seven years were calculated. The sensitivity analysis revealed that a decrease in total expenses by 15% results in a significant increase of the NPV and the IRR to $1,418,704 and 33.9%, respectively, for scenario 3. Considering a pessimistic assumption (an increase of the total expenses by 15%), all studied scenarios remain attractive. For instance, for scenario 3, the NPV, IRR, and PBP were evaluated to $285,047, 13.5%, and 9 years, respectively. Therefore, the co-digestion of sludge with agri-food wastes for energy recovery purposes could be considered a promising, eco-friendly, and economically viable approach in the Omani industrial estates.


2011 ◽  
pp. 57-78
Author(s):  
I. Pilipenko

The paper analyzes shortcomings of economic impact studies based mainly on input- output models that are often employed in Russia as well as abroad. Using studies about sport events in the USA and Olympic Games that took place during the last 30 years we reveal advantages of the cost-benefit analysis approach in obtaining unbiased assessments of public investments efficiency; the step-by-step method of cost-benefit analysis is presented in the paper as well. We employ the project of Sochi-2014 Winter Olympic and Paralympic Games in Russia to evaluate its efficiency using cost-benefit analysis for five accounts (areas of impact), namely government, households, environment, economic development, and social development, and calculate the net present value of the project taking into account its possible alternatives. In conclusion we suggest several policy directions that would enhance public investment efficiency within the Sochi-2014 Olympics.


2020 ◽  
Vol 12 (23) ◽  
pp. 9950
Author(s):  
Eyob Habte Tesfamariam ◽  
Zekarias Mihreteab Ogbazghi ◽  
John George Annandale ◽  
Yemane Gebrehiwot

Municipal sludge has economic value as a low-grade fertilizer as it consists of appreciable amounts of the macro and micronutrients. When using sludge as fertilizer, the economic aspect should be taken into account. In this study, the following specific objectives were identified: (a) to investigate the economic feasibility of using sludge as a fertilizer; (b) to estimate the maximum economic distance sludge can be transported as a fertilizer; and (c) to test the economic feasibility of selling sludge using commercial inorganic fertilizer as a bench mark. The study showed that for anaerobically digested, paddy dried, municipal sludge consisting of 3% N, 2% P, and 0.3% K the economic feasibility of transporting the sludge was limited to a diameter of 20 km in the arid zone, 28 km in the semi-arid zone, 51 km in the sub humid zone, 66 km in the humid zone, and 75 km in the super-humid zone. Therefore, the economic feasibility of using sludge as a substitute for or complementary to commercial inorganic fertilizer is dictated by the distance between the wastewater care work and the farm, sludge nutrient concentration, agro-ecological zone (rain and temperature), and the real-time commercial inorganic fertilizer price.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1297
Author(s):  
Juntae Kim ◽  
Hyo-Dong Han ◽  
Wang Yeol Lee ◽  
Collins Wakholi ◽  
Jayoung Lee ◽  
...  

Currently, the pork industry is incorporating in-line automation with the aim of increasing the slaughtered pork carcass throughput while monitoring quality and safety. In Korea, 21 parameters (such as back-fat thickness and carcass weight) are used for quality grading of pork carcasses. Recently, the VCS2000 system—an automatic meat yield grading machine system—was introduced to enhance grading efficiency and therefore increase pork carcass production. The VCS2000 system is able to predict pork carcass yield based on image analysis. This study also conducted an economic analysis of the system using a cost—benefit analysis. The subsection items of the cost-benefit analysis considered were net present value (NPV), internal rate of return (IRR), and benefit/cost ratio (BC ratio), and each method was verified through sensitivity analysis. For our analysis, the benefits were grouped into three categories: the benefits of reducing labor costs, the benefits of improving meat yield production, and the benefits of reducing pig feed consumption through optimization. The cost-benefit analysis of the system resulted in an NPV of approximately 615.6 million Korean won, an IRR of 13.52%, and a B/C ratio of 1.65.


2021 ◽  
Author(s):  
Saptarshi Pal ◽  
Chengi Kuo

Abstract In the past 70 years the world has relied extensively for its energy needs based on hydrocarbons produced significantly offshore. In recent years many installations with fixed platforms and pipelines are reaching the end of their useful life and are required by law to be decommissioned and removed if an approved alternative use cannot be found. This process coincides with focus on decarbonization arising from global warming and climate change. The conventional way of decommissioning is to remove the structure and take it onshore for disposal. Such an activity costs around £28 million for smaller UKCS installations in the Southern North Sea. Possible alternative solutions include their use as a research-leisure complex and artificial reef. Such an approach would have less impact on the environment and it is therefore worthwhile to explore the feasibility of repurposing these decommissioned UKCS platforms. The paper begins by highlighting the background to UKCS offshore decommissioning and farming fish life-cycle. This is followed by a critical review of the three options of total and partial removals and leave-on-site. It is found that repurposing decommissioned platforms for aquaculture farm has not been given sufficient attention and thus offers scope for a project to explore the feasibility of such a solution. Existing offshore fish farming in various countries are examined before using a decision-making matrix to select the most suitable UKCS installation for conversion and this led to using a normally unattended gas platform for the case study. The focus for this paper is on design and operation of an unattended fish farm and its cost benefit analysis. The former covers fish cage selection, capacity calculation, fish handling procedures, fish feed characteristics, feed demand, designing feed logistics and storage system. The processing facilities are layout on two decks and power needs are generated using a hybrid system of diesel and Li-ion battery. The possibility of using renewable sources by connecting to wind energy grids was also considered. For the latter capital and operating expenditure, revenue generated and maintenance costs are estimated before performing net present value prediction of the profitability of the fish farm over 10 years with for example up to 8 cages and three discount rates. The main conclusions derived are: It is technically feasible to convert a decommissioned gas platform to a fish farm and the operation can be economic. However, liability transfer implications in a repurposed offshore decommissioned gas platforms to fish farms were not established to verify the project viability. The conversion of unattended offshore gas platforms in the UKCS to an automated offshore fish farm is a novel solution which has not been implemented in the North Sea before. The work will provide an economic and environmental friendly solution to decommissioning offshore platforms and provide with a possible profitable investment.


2012 ◽  
Vol 92 (4) ◽  
pp. 525-543 ◽  
Author(s):  
S. C. Sheppard ◽  
S. Bittman

Sheppard, S. C. and Bittman, S. 2012. Farm practices as they affect NH 3 emissions from beef cattle. Can. J. Anim. Sci. 92: 525–543. Beef cattle farms in Canada are very diverse, both in size and management. Because the total biomass of beef cattle in Canada is larger than any other livestock sector, beef also has the potential for the largest environmental impact. In this study we estimate NH3 emissions associated with beef cattle production across Canada using data on farm practices obtained from a detailed survey answered by 1380 beef farmers in 11 Ecoregions. The farms were various combinations of cow/calf, backgrounding and finishing operations. The proportion of animals on pasture varied markedly among Ecoregions, especially for cows and calves, and this markedly affected the estimated NH3 emissions. The crop components of feed also varied among Ecoregions, but the resulting crude protein concentrations were quite consistent for both backgrounding and finishing cattle. Manure was stored longer in the west than in the east, and fall spreading of manure was notably more common in the west, especially when spread on tilled land. The estimated NH3 emissions per animal were relatively consistent across Ecoregions for confinement production, but because the proportion of animals on pasture varied with Ecoregion, so did the overall estimated NH3 emissions per animal. Temperature is a key factor causing Ecoregion differences, although husbandry and manure management practices are also important. Hypothetical best management practices had little ability to reduce overall emission estimates, and could not be implemented without detailed cost/benefit analysis.


2016 ◽  
Vol 5 (4) ◽  
pp. 58
Author(s):  
Monika Ghimire ◽  
Art Stoecker ◽  
Tracy A. Boyer ◽  
Hiren Bhavsar ◽  
Jeffrey Vitale

<p class="sar-body"><span lang="EN-US">This study incorporates spatially explicit geographic information system and simulation models to develop an optimal irrigation system. The purpose of the optimized irrigation system was to save depleted ground water supplies. ArcGIS was used to calculate the area of potential irrigable soils, and EPANET (a hydrological simulation program) was used to calculate energy costs. Crop yield response functions were used to estimate the yield of cotton to the amount of irrigation and the accumulation of soil salinity over a 50-year period. Four irrigation designs (A, B, C, and D) were analyzed with different irrigation schedules.</span></p><p class="sar-body"><span lang="EN-US">Design A allowed all producers to irrigate simultaneously at 600 gallons per minute (gpm) or 2,271 liters per minute (lpm) while designs B and C divided the irrigable areas into two parts. Design D divided the areas into four parts to allow producers to irrigate one part at a time at 800 gpm (3,028 lpm). Irrigation scheduling not only lessened the water use and cost, but also amplified the profitability of the irrigation system. In design A, if all producers adopted 600 gpm (2,271 lpm) pivots and operated simultaneously, the cost of the 360,000 gpm (1363,000 lpm) pipeline would be prohibitive. In contrast, designs B, C, and D increased net benefits and lowered the breakeven price of cotton. The 50-year net present value for designs A, B, C, and D was profitable over 75, 70, 70, and 65 cents of cotton price per pound (454 g), respectively. Thus, this study endorses irrigation scheduling as a tool for efficient irrigation development and management, and increases water conservation.</span></p>


2021 ◽  
Vol 13 (17) ◽  
pp. 9627
Author(s):  
Xue Qu ◽  
Daizo Kojima ◽  
Laping Wu ◽  
Mitsuyoshi Ando

We review existing studies on rice harvest loss from the aspects of estimation methods, magnitudes, causes, effects, and interventions. The harvest losses examined occurred from the field reaping to storage processes, including threshing, winnowing, and field transportation. We find that existing studies on rice harvest losses have focused on quantitative losses in Asia and Africa. Lack of knowledge, inadequate harvesting techniques, poor infrastructure, and inefficient harvest management practices are considered critical contributors to the losses. The magnitudes and causes of rice harvest losses are now better understood than interventions, which have simply been presented but lack an assessment of the effects and a cost–benefit analysis. Interestingly, reduction in harvest losses may threaten some farmers’ profits, such as rural women who make their living from post-production manual operations. Considering the current status of the literature, future researchers should examine how to balance social and individual welfare since farmers are key stakeholders in intervention implementation. A good understanding of the existing researches can help clarify future efforts for loss reduction, thereby reducing the burden of increasing agricultural production and promoting sustainable development of resources and the environment.


Sign in / Sign up

Export Citation Format

Share Document