scholarly journals Equine Endometrosis Pathological Features: Are They Dependent on NF-κB Signaling Pathway?

Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3151
Author(s):  
Tomasz Jasiński ◽  
Łukasz Zdrojkowski ◽  
Ewa Kautz ◽  
Edyta Juszczuk-Kubiak ◽  
Graça Ferreira-Dias ◽  
...  

Endometrosis is an important mares’ disease which considerably decreases their fertility. As classic endometrial classification methods might be insufficient for tissue pathological evaluation, further categorization into active/inactive and destructive/non-destructive types was developed by Hoffmann and others. This study aimed to compare NF-κB pathway genes transcription among histopathological types of endometrosis, following Hoffmann and co-authors’ classification. Endometrial samples, collected postmortem from cyclic mares (n = 100) in estrus or diestrus, were classified histologically and used for gene transcription assessment. Gene transcription of NF-κB subunits (RelA, NF-κB1, NF-κB2), pro-inflammatory molecules (MCP-1, IL-6), and hyaluronan synthases (HAS 1, HAS 2, HAS 3) was compared among endometrosis types (active, non-active, destructive, non-destructive). Most individual mRNA samples showed high expression of RelA, NF-κB1, and MCP-1 gene transcripts and the destructive type of endometrosis, simultaneously. The expression of RelA and NF-κB1 genes was higher in active destructive group than in the other groups only in the follicular phase, as well as being higher in the inactive destructive group than in the others, only in the mid-luteal phase. The increase in gene transcription of the NF-κB canonical activation pathway in destructive endometrosis may suggest the highest changes in extracellular matrix deposition. Moreover, the estrous cycle phase might influence fibrosis pathogenesis.

2021 ◽  
Author(s):  
Hao Li ◽  
Mengna Li ◽  
Pei Liu ◽  
Kai-Yang Wang ◽  
Haoyu Fang ◽  
...  

Due to the native skin limitations and the complexity of reconstructive microsurgery, advanced biomaterials are urgently required to promote wound healing for severe skin defects caused by accidents and disasters....


2021 ◽  
Vol 19 (4) ◽  
pp. 501-507
Author(s):  
Yunhe Gu ◽  
Peiyao Guo ◽  
Guangbiao Xu

Transforming growth factor-β1 promotes excessive extracellular matrix deposition and epithelial-mesenchymal transition of tubular epithelial cells, thus stimulating the progression of renal fibrosis. Carvacrol has been shown to alleviate cardiac and liver fibrosis and attenuate renal injury. However, the role of carvacrol on renal fibrosis has not been examined. First, measurements using Cell Counting Kit-8 showed that carvacrol reduced cell viability of tubular epithelial cell line HK-2 in a dose-dependent fashion. Second, transforming growth factor-β1 induced excessive extracellular matrix deposition in HK-2 cells with enhanced collagen I, collagen IV, and fibronectin expression. However, carvacrol decreased the expression of collagen I, collagen IV in a dose-dependent manner and fibronectin to attenuate the extracellular matrix deposition in HK-2. Third, carvacrol attenuated TGF-β1-induced decrease of E-cadherin and increase of snail, vimentin, and alpha-smooth muscle actin in HK-2 cells. Transforming growth factor-β1-induced increase in PI3K and AKT phosphorylation in HK-2 were also reversed by carvacrol. Collectively, carvacrol ameliorates renal fibrosis through inhibition of transforming growth factor-β1-induced extracellular matrix deposition and epithelial-mesenchymal transition of HK-2 cells, providing potential therapy for the treatment of renal fibrosis.


Endocrinology ◽  
2021 ◽  
Vol 162 (11) ◽  
Author(s):  
Tsai-Der Chuang ◽  
Derek Quintanilla ◽  
Drake Boos ◽  
Omid Khorram

Abstract The objective of this study was to determine the expression and functional role of a long noncoding RNA (lncRNA) MIAT (myocardial infarction–associated transcript) in leiomyoma pathogenesis. Leiomyoma compared with myometrium (n = 66) expressed significantly more MIAT that was independent of race/ethnicity and menstrual cycle phase but dependent on MED12 (mediator complex subunit 12) mutation status. Leiomyomas bearing the MED12 mutation expressed higher levels of MIAT and lower levels of microRNA 29 family (miR-29a, -b, and -c) compared with MED12 wild-type leiomyomas. Using luciferase reporter activity and RNA immunoprecipitation analysis, MIAT was shown to sponge the miR-29 family. In a 3-dimensional spheroid culture system, transient transfection of MIAT siRNA in leiomyoma smooth muscle cell (LSMC) spheroids resulted in upregulation of miR-29 family and downregulation of miR-29 targets, collagen type I (COL1A1), collagen type III (COL3A1), and TGF-β3 (transforming growth factor β-3). Treatment of LSMC spheroids with TGF-β3 induced COL1A1, COL3A1, and MIAT levels, but repressed miR-29 family expression. Knockdown of MIAT in LSMC spheroids blocked the effects of TGF-β3 on the induction of COL1A1 and COL3A1 expression. Collectively, these results underscore the physiological significance of MIAT in extracellular matrix accumulation in leiomyoma.


2011 ◽  
Vol 301 (6) ◽  
pp. G945-G949 ◽  
Author(s):  
Carol A. de la Motte

The causes of fibrosis, or the inappropriate wound healing, that follows chronic intestinal inflammation are not well defined and likely involve the contributions of multiple cellular mechanisms. As other articles in this series confirm, inflammatory cytokines clearly play a role in driving cell differentiation to the myofibroblast phenotype, promoting proliferation and extracellular matrix deposition that are characteristic of fibrotic tissue. However, controlling the balance of cytokines produced and process of myofibroblast differentiation appears to be more complex. This review considers ways in which hyaluronan, an extracellular matrix component that is remodeled during the progression of colitis, may provide indirect as well as direct cues that influence the balancing act of intestinal wound healing.


2017 ◽  
Vol 27 (18) ◽  
pp. 2878-2886.e5 ◽  
Author(s):  
Younghoon Oh ◽  
Jennifer H. Schreiter ◽  
Hiroki Okada ◽  
Carsten Wloka ◽  
Satoshi Okada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document