scholarly journals L-Arginine Supplementation for Nulliparous Sows during the Last Third of Gestation

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3476
Author(s):  
Gustavo de Amorim Rodrigues ◽  
Dante Teixeira Valente Júnior ◽  
Marcos Henrique Soares ◽  
Caroline Brito da Silva ◽  
Fernanda Abranches Fialho ◽  
...  

We evaluated the effects of L-arginine supplementation during the last third of gestation on molecular mechanisms related to skeletal muscle development of piglets and litter traits at birth. Twenty-three nulliparous sows averaging 205.37 ± 11.50 kg of body weight were randomly assigned to the following experimental treatments: control (CON), where pregnant sows were fed diets to meet their nutritional requirements; arginine (ARG), where sows where fed CON + 1.0% L-arginine. Skeletal muscle from piglets born from sows from ARG group had greater mRNA expression of MYOD (p = 0.043) and MYOG (p ≤ 0.01), and tended to present greater mRNA expression (p = 0.06) of IGF-2 gene compared to those born from CON sows. However, there were no differences (p > 0.05) in the histomorphometric variables of fetuses’ skeletal muscle. The total weight of born piglets, total weight of born alive piglets, piglet weight at birth, coefficient of variation of birth weight, and the incidence of intrauterine growth restriction (IUGR) piglets did not differ between groups. No stillborn piglets (p < 0.01) were verified in the ARG sows compared to CON group. The blood levels of estradiol (p = 0.035) and urea (p = 0.03) were higher in ARG sows compared to those from the CON group. In summary, our data show that arginine supplementation of nulliparous sows at late gestation enhance mRNA expression of key myogenic regulatory factors, which likely contribute to improve animal growth rates in later stages of development.

Author(s):  
Paul J. Rozance ◽  
Stephanie R Wesolowski ◽  
Sonnet S. Jonker ◽  
Laura D Brown

Fetal skeletal muscle growth requires myoblast proliferation, differentiation, and fusion into myofibers in addition to protein accretion for fiber hypertrophy. Oxygen is an important regulator of this process. Therefore, we hypothesized that fetal anemic hypoxemia would inhibit skeletal muscle growth. Studies were performed in late gestation fetal sheep that were bled to anemic, and therefore hypoxemic, conditions beginning at ~125 days of gestation (term = 148 days) for 9 ± 0 days (n=19) and compared to control fetuses (n=16). A metabolic study was performed on gestational day ~134 to measure fetal protein kinetic rates. Myoblast proliferation and myofiber area were determined in biceps femoris (BF), tibialis anterior (TA), and flexor digitorum superficialis (FDS) muscles. mRNA expression of muscle regulatory factors was determined in BF. Fetal arterial hematocrit and oxygen content were 28% and 52% lower, respectively, in anemic fetuses. Fetal weight and whole-body protein synthesis, breakdown, and accretion rates were not different between groups. Hindlimb length, however, was 7% shorter in anemic fetuses. TA and FDS muscles weighed less and FDS myofiber area was smaller in anemic fetuses compared to controls. The percentage of Pax7+ myoblasts that expressed Ki67 was lower in BF and tended to be lower in FDS from anemic fetuses indicating reduced myoblast proliferation. There was less MYOD and MYF6 mRNA expression in anemic vs. control BF consistent with reduced myoblast differentiation. These results indicate that fetal anemic hypoxemia reduced muscle growth. We speculate that fetal muscle growth may be improved by strategies that increase oxygen availability.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 172
Author(s):  
Boyin Jia ◽  
Yuan Liu ◽  
Qining Li ◽  
Jiali Zhang ◽  
Chenxia Ge ◽  
...  

Studies of the gene and miRNA expression profiles associated with the postnatal late growth, development, and aging of skeletal muscle are lacking in sika deer. To understand the molecular mechanisms of the growth and development of sika deer skeletal muscle, we used de novo RNA sequencing (RNA-seq) and microRNA sequencing (miRNA-seq) analyses to determine the differentially expressed (DE) unigenes and miRNAs from skeletal muscle tissues at 1, 3, 5, and 10 years in sika deer. A total of 51,716 unigenes, 171 known miRNAs, and 60 novel miRNAs were identified based on four mRNA and small RNA libraries. A total of 2,044 unigenes and 11 miRNAs were differentially expressed between adolescence and juvenile sika deer, 1,946 unigenes and 4 miRNAs were differentially expressed between adult and adolescent sika deer, and 2,209 unigenes and 1 miRNAs were differentially expressed between aged and adult sika deer. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that DE unigenes and miRNA were mainly related to energy and substance metabolism, processes that are closely associate with the growth, development, and aging of skeletal muscle. We also constructed mRNA–mRNA and miRNA–mRNA interaction networks related to the growth, development, and aging of skeletal muscle. The results show that mRNA (Myh1, Myh2, Myh7, ACTN3, etc.) and miRNAs (miR-133a, miR-133c, miR-192, miR-151-3p, etc.) may play important roles in muscle growth and development, and mRNA (WWP1, DEK, UCP3, FUS, etc.) and miRNAs (miR-17-5p, miR-378b, miR-199a-5p, miR-7, etc.) may have key roles in muscle aging. In this study, we determined the dynamic miRNA and unigenes transcriptome in muscle tissue for the first time in sika deer. The age-dependent miRNAs and unigenes identified will offer insights into the molecular mechanism underlying muscle development, growth, and maintenance and will also provide valuable information for sika deer genetic breeding.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Mao Nie ◽  
Zhong-Liang Deng ◽  
Jianming Liu ◽  
Da-Zhi Wang

A healthy and independent life requires skeletal muscles to maintain optimal function throughout the lifespan, which is in turn dependent on efficient activation of processes that regulate muscle development, homeostasis, and metabolism. Thus, identifying mechanisms that modulate these processes is of crucial priority. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), have emerged as a class of previously unrecognized transcripts whose importance in a wide range of biological processes and human disease is only starting to be appreciated. In this review, we summarize the roles of recently identified miRNAs and lncRNAs during skeletal muscle development and pathophysiology. We also discuss several molecular mechanisms of these noncoding RNAs. Undoubtedly, further systematic understanding of these noncoding RNAs’ functions and mechanisms will not only greatly expand our knowledge of basic skeletal muscle biology, but also significantly facilitate the development of therapies for various muscle diseases, such as muscular dystrophies, cachexia, and sarcopenia.


2020 ◽  
Vol 20 (1) ◽  
pp. 3-10
Author(s):  
Patricia Adu-Asiamah ◽  
Qiying Leng ◽  
Haidong Xu ◽  
Jiahui Zheng ◽  
Zhihui Zhao ◽  
...  

AbstractCircular RNAs (circRNAs) have been identified in the skeletal muscle of numerous species of animals. Their abundance, diversity, and their dynamic expression patterns have been revealed in various developmental stages and physiological conditions in skeletal muscles. Recently, studies have made known that circRNAs widely participate in muscle cell proliferation and differentiation. They are also involved in other life processes such as functioning as microRNA (miRNA) sponges, regulators of splicing and transcription, and modifiers of parental gene expression with emerging pieces of evidence indicating a high chance of playing a vital role in several cells and tissues, especially the muscles. Other research has emphatically stated that the growth and development of skeletal muscle are regulated by proteins as well as non-coding RNAs, which involve circRNAs. Therefore, circRNAs have been considered significant biological regulators for understanding the molecular mechanisms of myoblasts. Here, we discuss how circRNAs are abundantly expressed in muscle (myoblast) and their critical roles in growth and development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Caroline Barbé ◽  
Audrey Loumaye ◽  
Pascale Lause ◽  
Olli Ritvos ◽  
Jean-Paul Thissen

Skeletal muscle, the most abundant tissue in the body, plays vital roles in locomotion and metabolism. Understanding the cellular processes that govern regulation of muscle mass and function represents an essential step in the development of therapeutic strategies for muscular disorders. Myostatin, a member of the TGF-β family, has been identified as a negative regulator of muscle development. Indeed, its inhibition induces an extensive skeletal muscle hypertrophy requiring the activation of Smad 1/5/8 and the Insulin/IGF-I signaling pathway, but whether other molecular mechanisms are involved in this process remains to be determined. Using transcriptomic data from various Myostatin inhibition models, we identified Pak1 as a potential mediator of Myostatin action on skeletal muscle mass. Our results show that muscle PAK1 levels are systematically increased in response to Myostatin inhibition, parallel to skeletal muscle mass, regardless of the Myostatin inhibition model. Using Pak1 knockout mice, we investigated the role of Pak1 in the skeletal muscle hypertrophy induced by different approaches of Myostatin inhibition. Our findings show that Pak1 deletion does not impede the skeletal muscle hypertrophy magnitude in response to Myostatin inhibition. Therefore, Pak1 is permissive for the skeletal muscle mass increase caused by Myostatin inhibition.


2012 ◽  
Vol 303 (1) ◽  
pp. E1-E17 ◽  
Author(s):  
Rebecca Berdeaux ◽  
Randi Stewart

Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3′,5′-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets.


2008 ◽  
Vol 586 (9) ◽  
pp. 2371-2379 ◽  
Author(s):  
Paula M. Costello ◽  
Anthea Rowlerson ◽  
Nur Aida Astaman ◽  
Fred Erick W. Anthony ◽  
Avan Aihie Sayer ◽  
...  

2020 ◽  
Vol 21 (18) ◽  
pp. 6732 ◽  
Author(s):  
Stefania Fochi ◽  
Gaia Giuriato ◽  
Tonia De Simone ◽  
Macarena Gomez-Lira ◽  
Stefano Tamburin ◽  
...  

Sarcopenia refers to a condition of progressive loss of skeletal muscle mass and function associated with a higher risk of falls and fractures in older adults. Musculoskeletal aging leads to reduced muscle mass and strength, affecting the quality of life in elderly people. In recent years, several studies contributed to improve the knowledge of the pathophysiological alterations that lead to skeletal muscle dysfunction; however, the molecular mechanisms underlying sarcopenia are still not fully understood. Muscle development and homeostasis require a fine gene expression modulation by mechanisms in which microRNAs (miRNAs) play a crucial role. miRNAs modulate key steps of skeletal myogenesis including satellite cells renewal, skeletal muscle plasticity, and regeneration. Here, we provide an overview of the general aspects of muscle regeneration and miRNAs role in skeletal mass homeostasis and plasticity with a special interest in their expression in sarcopenia and skeletal muscle adaptation to exercise in the elderly.


Sign in / Sign up

Export Citation Format

Share Document