scholarly journals Association of Heterophil/Lymphocyte Ratio with Intestinal Barrier Function and Immune Response to Salmonella enteritidis Infection in Chicken

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3498
Author(s):  
Mamadou Thiam ◽  
Astrid Lissette Barreto Sánchez ◽  
Jin Zhang ◽  
Maiqing Zheng ◽  
Jie Wen ◽  
...  

The heterophil/lymphocyte (H/L) ratio has been extensively studied to select poultry that are resistant to environmental stressors. Chickens with a low H/L ratio are superior to the chickens with a high H/L ratio in survival, immune response, and resistance to Salmonella infection. However, this disease resistance ability is likely to be associated with enhanced intestinal immunity. Therefore, to expand our understanding of these underlying resistance mechanisms, it is crucial to investigate the correlation between the H/L ratio as a blood immune indicator in live chickens and the intestinal barrier function and immunity. Jinxing yellow chickens H/L line one-day-old were divided into non-infected (NI) and Salmonella enteritidis infected (SI) at 7-days old. After dividing the birds into NI and SI, blood samples were taken for H/L ratios determination, and subsequently, birds from the SI group were infected with Salmonella enteritidis (SE). We assessed the effects of SE infection on the (i) goblet cells number from the ileum and caecum gut-segments, (ii) ileal mucosa morphology, and (iii) immune gene mRNA expressions from the ileum and caecum of NI and SI chickens at 7 and 21 days-post-infection (dpi). We found that the H/L ratio was negatively correlated with most intestinal immune indices, particularly with the goblet cells number and with IL-1β, IL-8, and IFN-γ ileal expressions. In conclusion, these results suggest that the H/L ratio is associated with the intestinal barrier and immune response for SE clearance and that the chickens with a low H/L ratio displayed enhanced intestinal immunity. This study expands the current knowledge that is related to using the H/L ratio to select and breed resistant broiler chickens.

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 99-99
Author(s):  
Bonjin Koo ◽  
Janghan Choi ◽  
Chengbo Yang ◽  
Charles Martin Nyachoti

Abstract The aim was to investigate the effects of diet complexity and L-Thr supplementation on immune response and intestinal barrier function in nursery pigs. Thirty-two pigs (7.23 ± 0.48 kg of body weight) were randomly assigned dietary treatments in a 2 × 2 factorial arrangement based on diet complexity (complex or simple) and L-Thr supplementation (standard, NRC 2012 or 15% more). The complex diet contained fish meal, plasma protein and dried whey to mimic a conventional nursery diet. The simple diet was formulated with corn, wheat, and soybean meal and did not contain any animal products. Pigs were individually housed and fed experimental diets ad libitum for 14 d. All data were analyzed using mixed procedure of SAS with the individual pen as the experimental unit. Pigs fed the simple diet had greater (P < 0.05) plasma interleukin (IL)-6 and IL-10 concentrations compared to those fed the complex diet. Pigs fed the simple diet tended to show greater (P < 0.10) expression of genes encoding for tumor necrosis factor-α, claudin-1, and zonula occludens-1 in the jejunum compared to those fed the complex diet. The addition of L-Thr increased (P < 0.05) villus height and numbers of both villi and crypt goblet cells in the jejunum and deepened (P < 0.05) crypts in the proximal colon. Also, L-Thr-supplemented diets upregulated (P < 0.05) the expression of the gene encoding for occludin and tended to downregulate (P < 0.10) IL-6 gene expression in the jejunum. Trends (P < 0.10) for interaction between diet complexity and L-Thr supplementation were observed in villus height:crypt depth ratio, the number of goblet cells, and IL-6 gene expression in the jejunum. In conclusion, feeding a simple diet stimulated the immune system of nursery pigs compared to a complex diet. Dietary L-Thr supplementation fortified intestinal structure and function.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 527
Author(s):  
Jie Fu ◽  
Tenghao Wang ◽  
Xiao Xiao ◽  
Yuanzhi Cheng ◽  
Fengqin Wang ◽  
...  

This study investigated the effects of dietary C. butyricum ZJU-F1 on the apparent digestibility of nutrients, intestinal barrier function, immune response, and microflora of weaned piglets, with the aim of providing a theoretical basis for the application of Clostridium butyricum as an alternative to antibiotics in weaned piglets. A total of 120 weanling piglets were randomly divided into four treatment groups, in which piglets were fed a basal diet supplemented with antibiotics (CON), Bacillus licheniformis (BL), Clostridium butyricum ZJU-F1 (CB), or Clostridium butyricum and Bacillus licheniformis (CB-BL), respectively. The results showed that CB and CB-BL treatment increased the intestinal digestibility of nutrients, decreased intestinal permeability, and increased intestinal tight junction protein and mucin expression, thus maintaining the integrity of the intestinal epithelial barrier. CB and CB-BL, as exogenous probiotics, were also found to stimulate the immune response of weaned piglets and improve the expression of antimicrobial peptides in the ileum. In addition, dietary CB and CB-BL increased the proportion of Lactobacillus. The levels of butyric acid, propionic acid, acetic acid, and total acid were significantly increased in the ceca of piglets fed CB and CB-BL. Furthermore, we validated the effects of C. butyricum ZJU-F1 on the intestinal barrier function and immune response in vitro and found C. butyricum ZJU-F1 improved intestinal function and enhanced the TLR-2-MyD88-NF-κB signaling.


2021 ◽  
Author(s):  
Benthe van der Lugt ◽  
Maartje C.P. Vos ◽  
Mechteld Grootte Bromhaar ◽  
Noortje Ijssennagger ◽  
Frank Vrieling ◽  
...  

2020 ◽  
Vol 11 (7) ◽  
pp. 5992-6006 ◽  
Author(s):  
Xue Han ◽  
Bingyao Bai ◽  
Qian Zhou ◽  
Jiahui Niu ◽  
Jing Yuan ◽  
...  

Ziziphus Jujuba cv. Pozao has been consumed as a traditional fruit with regional characteristics in China for a long time; however, fewer studies on polysaccharides from Ziziphus Jujuba cv. Pozao (JP) have been documented.


Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 130 ◽  
Author(s):  
Carlos González-Quilen ◽  
Esther Rodríguez-Gallego ◽  
Raúl Beltrán-Debón ◽  
Montserrat Pinent ◽  
Anna Ardévol ◽  
...  

The intestinal barrier is constantly exposed to potentially harmful environmental factors, including food components and bacterial endotoxins. When intestinal barrier function and immune homeostasis are compromised (intestinal dysfunction), inflammatory conditions may develop and impact overall health. Evidence from experimental animal and cell culture studies suggests that exposure of intestinal mucosa to proanthocyanidin (PAC)-rich plant products, such as grape seeds, may contribute to maintaining the barrier function and to ameliorating the pathological inflammation present in diet-induced obesity and inflammatory bowel disease. In this review, we aim to update the current knowledge on the bioactivity of PACs in experimental models of intestinal dysfunction and in humans, and to provide insights into the underlying biochemical and molecular mechanisms.


2020 ◽  
Vol 75 ◽  
pp. 104246
Author(s):  
Jiaojiao Li ◽  
Li Zhang ◽  
Yafei Li ◽  
Yi Wu ◽  
Tao Wu ◽  
...  

2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Siddhartha S Ghosh ◽  
Jing Wang ◽  
Paul J Yannie ◽  
Shobha Ghosh

Abstract The intestinal barrier is complex and consists of multiple layers, and it provides a physical and functional barrier to the transport of luminal contents to systemic circulation. While the epithelial cell layer and the outer/inner mucin layer constitute the physical barrier and are often referred to as the intestinal barrier, intestinal alkaline phosphatase (IAP) produced by epithelial cells and antibacterial proteins secreted by Panneth cells represent the functional barrier. While antibacterial proteins play an important role in the host defense against gut microbes, IAP detoxifies bacterial endotoxin lipopolysaccharide (LPS) by catalyzing the dephosphorylation of the active/toxic Lipid A moiety, preventing local inflammation as well as the translocation of active LPS into systemic circulation. The causal relationship between circulating LPS levels and the development of multiple diseases underscores the importance of detailed examination of changes in the “layers” of the intestinal barrier associated with disease development and how this dysfunction can be attenuated by targeted interventions. To develop targeted therapies for improving intestinal barrier function, it is imperative to have a deeper understanding of the intestinal barrier itself, the mechanisms underlying the development of diseases due to barrier dysfunction (eg, high circulating LPS levels), the assessment of intestinal barrier function under diseased conditions, and of how individual layers of the intestinal barrier can be beneficially modulated to potentially attenuate the development of associated diseases. This review summarizes the current knowledge of the composition of the intestinal barrier and its assessment and modulation for the development of potential therapies for barrier dysfunction-associated diseases.


2020 ◽  
Vol 98 (5) ◽  
Author(s):  
Bonjin Koo ◽  
Janghan Choi ◽  
Chengbo Yang ◽  
Charles Martin Nyachoti

Abstract The aim of this study was to investigate the effects of diet complexity and l-Thr supplementation level on the growth performance, immune response, intestinal barrier function, and microbial metabolites in nursery pigs. Thirty-two weaned pigs (body weight 7.23 ± 0.48 kg) were randomly assigned to dietary treatments in a 2 × 2 factorial arrangement based on diet complexity (complex or simple) and dietary Thr content. The complex diet contained fish meal, plasma protein, and dried whey to mimic a conventional nursery diet. The simple diet was formulated with corn, wheat, and soybean meal and did not contain any animal products. l-Thr was supplemented to each diet to supply either 100% (STD Thr) or 115% (SUP Thr) of the NRC (2012) requirement for standardized ileal digestible Thr. Pigs were individually housed and fed experimental diets ad libitum for 14 d. Diet complexity, dietary Thr content, and their interactions were considered the main effects. Pigs fed the simple diet had greater (P < 0.05) plasma interleukin (IL)-10 and IL-6 concentrations compared with those fed the complex diet on days 7 and 14, respectively. Simple diet-fed pigs tended to show greater (P < 0.10) expression of genes encoding for tumor necrosis factor-α, claudin-1, and zonula occludens-1 in the jejunum compared with complex diet-fed pigs. The simple diet-fed pigs had greater (P < 0.05) concentrations of NH3-N in the jejunum digesta than did complex diet-fed pigs. The SUP Thr increased (P < 0.05) villus height and goblet cell (GC) density in villi and crypts in the jejunum and deepened (P < 0.05) crypts in the proximal colon. The SUP Thr resulted in the upregulation (P < 0.05) of occludin gene expression and a tendency toward the downregulation (P = 0.10) of IL-6 gene expression in the jejunum. Interactions (P < 0.05) between diet complexity and l-Thr supplementation level were observed in GC density in the crypt, NH3-N concentration in the jejunum, and the contents of acetate, propionate, and total volatile fatty acids in the colon. In conclusion, feeding a simple diet to nursery pigs resulted in systemic and intestinal inflammation. The SUP Thr diet did not normalize the simple diet-induced inflammation but improved gut integrity. SUP Thr seems to have greater benefits with a simple diet than with a complex diet. Therefore, SUP Thr in a simple diet could be a beneficial nutritional strategy for enhancing gut health.


Sign in / Sign up

Export Citation Format

Share Document