scholarly journals Recent Advances in the Molecular Design and Applications of Multispecific Biotherapeutics

Antibodies ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 13
Author(s):  
Xiaotian Zhong ◽  
Aaron M. D’Antona

Recombinant protein-based biotherapeutics drugs have transformed clinical pipelines of the biopharmaceutical industry since the launch of recombinant insulin nearly four decades ago. These biologic drugs are structurally more complex than small molecules, and yet share a similar principle for rational drug discovery and development: That is to start with a pre-defined target and follow with the functional modulation with a therapeutic agent. Despite these tremendous successes, this “one target one drug” paradigm has been challenged by complex disease mechanisms that involve multiple pathways and demand new therapeutic routes. A rapidly evolving wave of multispecific biotherapeutics is coming into focus. These new therapeutic drugs are able to engage two or more protein targets via distinct binding interfaces with or without the chemical conjugation to large or small molecules. They possess the potential to not only address disease intricacy but also exploit new therapeutic mechanisms and assess undruggable targets for conventional monospecific biologics. This review focuses on the recent advances in molecular design and applications of major classes of multispecific biotherapeutics drugs, which include immune cells engagers, antibody-drug conjugates, multispecific tetherbodies, biologic matchmakers, and small-scaffold multispecific modalities. Challenges posed by the multispecific biotherapeutics drugs and their future outlooks are also discussed.

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 627 ◽  
Author(s):  
Beatriz G. de la Torre ◽  
Fernando Albericio

Although the pharmaceutical industry will remember 2020 as the year of COVID-19, it is important to highlight that this year has been the second-best—together with 1996—in terms of the number of drugs accepted by the US Food and Drug Administration (FDA). Each of these two years witnessed the authorization of 53 drugs—a number surpassed only in 2018 with 59 pharmaceutical agents. The 53 approvals in 2020 are divided between 40 new chemical entities and 13 biologic drugs (biologics). Of note, ten monoclonal antibodies, two antibody–drug conjugates, three peptides, and two oligonucleotides have been approved in 2020. Close inspection of the so-called small molecules reveals the significant presence of fluorine atoms and/or nitrogen aromatic heterocycles. This report analyzes the 53 new drugs of the 2020 harvest from a strictly chemical perspective, as it did for those authorized in the previous four years. On the basis of chemical structure alone, the drugs that received approval in 2020 are classified as the following: biologics (antibodies, antibody-drug conjugates, and proteins); TIDES (peptide and oligonucleotides); natural products; fluorine-containing molecules; nitrogen aromatic heterocycles; and other small molecules.


2019 ◽  
Vol 26 (30) ◽  
pp. 5609-5624
Author(s):  
Dijana Saftić ◽  
Željka Ban ◽  
Josipa Matić ◽  
Lidija-Marija Tumirv ◽  
Ivo Piantanida

: Among the most intensively studied classes of small molecules (molecular weight < 650) in biomedical research are small molecules that non-covalently bind to DNA/RNA, and another intensively studied class is nucleobase derivatives. Both classes have been intensively elaborated in many books and reviews. However, conjugates consisting of DNA/RNA binder covalently linked to nucleobase are much less studied and have not been reviewed in the last two decades. Therefore, this review summarized reports on the design of classical DNA/RNA binder – nucleobase conjugates, as well as data about their interactions with various DNA or RNA targets, and even in some cases protein targets are involved. According to these data, the most important structural aspects of selective or even specific recognition between small molecule and target are proposed, and where possible related biochemical and biomedical aspects were discussed. The general conclusion is that this, rather new class of molecules showed an amazing set of recognition tools for numerous DNA or RNA targets in the last two decades, as well as few intriguing in vitro and in vivo selectivities. Several lead research lines show promising advancements toward either novel, highly selective markers or bioactive, potentially druggable molecules.


2021 ◽  
Vol 22 (4) ◽  
pp. 2008
Author(s):  
Jinsha Liu ◽  
Priyanka Pandya ◽  
Sepideh Afshar

Around 77 new oncology drugs were approved by the FDA in the past five years; however, most cancers remain untreated. Small molecules and antibodies are dominant therapeutic modalities in oncology. Antibody-drug conjugates, bispecific antibodies, peptides, cell, and gene-therapies are emerging to address the unmet patient need. Advancement in the discovery and development platforms, identification of novel targets, and emergence of new technologies have greatly expanded the treatment options for patients. Here, we provide an overview of various therapeutic modalities and the current treatment options in oncology, and an in-depth discussion of the therapeutics in the preclinical stage for the treatment of breast cancer, lung cancer, and multiple myeloma.


2020 ◽  
Vol 3 (4) ◽  
pp. 257-264
Author(s):  
Catherine J Hutchings

Abstract Antibodies are now well established as therapeutics with many additional advantages over small molecules and peptides relative to their selectivity, bioavailability, half-life and effector function. Major classes of membrane-associated protein targets include G protein-coupled receptors (GPCRs) and ion channels that are linked to a wide range of disease indications across all therapeutic areas. This mini-review summarizes the antibody target landscape for both GPCRs and ion channels as well as current progress in the respective research and development pipelines with some example case studies highlighted from clinical studies, including those being evaluated for the treatment of symptoms in COVID-19 infection.


2019 ◽  
Vol 47 (W1) ◽  
pp. W357-W364 ◽  
Author(s):  
Antoine Daina ◽  
Olivier Michielin ◽  
Vincent Zoete

Abstract SwissTargetPrediction is a web tool, on-line since 2014, that aims to predict the most probable protein targets of small molecules. Predictions are based on the similarity principle, through reverse screening. Here, we describe the 2019 version, which represents a major update in terms of underlying data, backend and web interface. The bioactivity data were updated, the model retrained and similarity thresholds redefined. In the new version, the predictions are performed by searching for similar molecules, in 2D and 3D, within a larger collection of 376 342 compounds known to be experimentally active on an extended set of 3068 macromolecular targets. An efficient backend implementation allows to speed up the process that returns results for a druglike molecule on human proteins in 15–20 s. The refreshed web interface enhances user experience with new features for easy input and improved analysis. Interoperability capacity enables straightforward submission of any input or output molecule to other on-line computer-aided drug design tools, developed by the SIB Swiss Institute of Bioinformatics. High levels of predictive performance were maintained despite more extended biological and chemical spaces to be explored, e.g. achieving at least one correct human target in the top 15 predictions for >70% of external compounds. The new SwissTargetPrediction is available free of charge (www.swisstargetprediction.ch).


Author(s):  
Hao Xie ◽  
Junjia Liu ◽  
Diego M. Alem Glison ◽  
Jason B. Fleming

Proteolysis targeting chimeras (PROTACs) are a class of small molecules designed to target proteins for degradation. Their novel and unique modes of action provide PROTACs with the potential for their application in the management of both solid and hematologic malignancies. Since its initial discovery, the technology of targeted protein degradation, especially in the form of PROTACs, has had significant advances. A number of PROTACs have entered a late stage of preclinical development. Several of them are either in phase 1/2 clinical trials or approaching approval for initial clinical evaluation. This article discusses the preclinical and clinical findings of PROTACs of clinically relevant protein targets in cancer.


2021 ◽  
Author(s):  
Inga V. Hochheiser ◽  
Michael Pilsl ◽  
Gregor Hagelueken ◽  
Jonas Moecking ◽  
Michael Marleaux ◽  
...  

NLRP3 is an intracellular sensor protein whose activation by a broad spectrum of exogenous and endogenous stimuli leads to inflammasome formation and pyroptosis. The mechanisms leading to NLRP3 activation and the way how antagonistic small molecules function remain poorly understood. Here we report the cryo-electron microscopy structures of full-length NLRP3 in its native form and complexed with the inhibitor CRID3 (also named MCC950). Inactive, ADP-bound NLRP3 is a decamer composed of homodimers of intertwined LRR domains that assemble back-to-back as pentamers with the NACHT domain located at the apical axis of this spherical structure. Molecular contacts between the concave sites of two opposing LRRs are mediated by an acidic loop extending from an LRR transition segment. Binding of CRID3 significantly stabilizes the NACHT and LRR domains relative to each other, allowing structural resolution of 3.9-4.2 Ang. CRID3 binds into a cleft, connecting four subdomains of the NACHT with the transition LRR. Its central sulfonylurea group interacts with the Walker A motif of the NLRP3 nucleotide-binding domain and is sandwiched between two arginines from opposing sites, explaining the specificity of NLRP3 for this chemical entity. With the determination of the binding site of this lead therapeutic, specific targeting of NLRP3 for the treatment of autoinflammatory and autoimmune diseases and rational drug optimization are within reach.


2020 ◽  
Vol 21 (21) ◽  
pp. 8085
Author(s):  
Giacomo Forti ◽  
Andrea Nitti ◽  
Peshawa Osw ◽  
Gabriele Bianchi ◽  
Riccardo Po ◽  
...  

The introduction of the IDIC/ITIC families of non-fullerene acceptors has boosted the photovoltaic performances of bulk-heterojunction organic solar cells. The fine tuning of the photophysical, morphological and processability properties with the aim of reaching higher and higher photocurrent efficiencies has prompted uninterrupted worldwide research on these peculiar families of organic compounds. The main strategies for the modification of IDIC/ITIC compounds, described in several contributions published in the past few years, can be summarized and classified into core modification strategies and end-capping group modification strategies. In this review, we analyze the more recent advances in this field (last two years), and we focus our attention on the molecular design proposed to increase photovoltaic performance with the aim of rationalizing the general properties of these families of non-fullerene acceptors.


Sign in / Sign up

Export Citation Format

Share Document