scholarly journals Mutations at embB Codon 306 Are an Important Molecular Indicator of Ethambutol Resistance in Mycobacterium tuberculosis

2008 ◽  
Vol 53 (3) ◽  
pp. 1061-1066 ◽  
Author(s):  
Angela M. Starks ◽  
Aysel Gumusboga ◽  
Bonnie B. Plikaytis ◽  
Thomas M. Shinnick ◽  
James E. Posey

ABSTRACT Ethambutol resistance in clinical Mycobacterium tuberculosis isolates is associated primarily with missense mutations in the embB gene. However, recent reports have described the presence of embB mutations, especially those at embB codon 306, in isolates susceptible to ethambutol. To clarify the role of embB mutations in ethambutol resistance, we sequenced the ethambutol resistance-determining region in spontaneous ethambutol-resistant mutants. In our study, 66% of spontaneous mutants contained a single point mutation in embB, with 55% of these occurring at embB 306. The MIC of ethambutol for spontaneous mutants was increased two- to eightfold relative to the pansusceptible M. tuberculosis strains from which the mutants were generated. To further characterize the role of embB 306 mutations, we directly introduced mutant alleles, embB(M306V) or embB(M306I), into pansusceptible M. tuberculosis strains and conversely reverted mutant alleles in spontaneous ethambutol-resistant mutants back to those of the wild type via allelic exchange using specialized linkage transduction. We determined that the MIC of ethambutol was reduced fourfold for three of the four spontaneous ethambutol-resistant embB 306 mutants when the mutant allele was replaced with the wild-type embB allele. The MIC for one of the spontaneous mutants genetically reverted to wild-type embB was reduced by only twofold. When the wild-type embB allele was converted to the mutant allele embB(M306V), the ethambutol MIC was increased fourfold, and when the allele was changed to M306I, the ethambutol MIC increased twofold. Our data indicate that embB 306 mutations are sufficient to confer ethambutol resistance, and detection of these mutations should be considered in the development of rapid molecular tests.

1999 ◽  
Vol 73 (5) ◽  
pp. 4272-4278 ◽  
Author(s):  
Yanping E. Lu ◽  
Todd Cassese ◽  
Margaret Kielian

ABSTRACT Semliki Forest virus (SFV) and Sindbis virus (SIN) are enveloped alphaviruses that enter cells via low-pH-triggered fusion in the endocytic pathway and exit by budding from the plasma membrane. Previous studies with cholesterol-depleted insect cells have shown that SFV requires cholesterol in the cell membrane for both virus fusion and efficient exit of progeny virus. An SFV mutant, srf-3, shows efficient fusion and exit in the absence of cholesterol due to a single point mutation in the E1 spike subunit, proline 226 to serine. We have here characterized the role of cholesterol in the entry and exit of SIN, an alphavirus quite distantly related to SFV. Growth, primary infection, fusion, and exit of SIN were all dramatically inhibited in cholesterol-depleted cells compared to control cells. Based on sequence differences within the E1 226 region between SFV,srf-3, and SIN, we constructed six SIN mutants with alterations within this region and characterized their cholesterol dependence. A SIN mutant, SGM, that had thesrf-3 amino acid sequence from E1 position 224 to 235 showed increases of ∼100-fold in infection and ∼250-fold in fusion with cholesterol-depleted cells compared with infection and fusion of wild-type SIN. Pulse-chase analysis demonstrated that SGMexit from cholesterol-depleted cells was markedly more efficient than that of wild-type SIN. Thus, similar to SFV, SIN was cholesterol dependent for both virus entry and exit, and the cholesterol dependence of both steps could be modulated by sequences within the E1 226 region.


1996 ◽  
Vol 40 (9) ◽  
pp. 1983-1987 ◽  
Author(s):  
Y Q Zhu ◽  
K M Remington ◽  
T W North

We selected mutants of feline immunodeficiency virus (FIV) that are resistant to 2',3'-dideoxy-2',3'-didehydrothymidine (d4T). Two mutants were selected in cultured cells with a stepwise increase in d4T concentration, resulting in mutants able to replicate in 100 microM d4T. These mutants were three- to sixfold more resistant to d4T than wild-type FIV. They were also cross-resistant to 3'-azido-3'-deoxythymidine (AZT), 3'-fluoro-2',3'-dideoxythymidine, 2',3'-dideoxycytidine, 2',3'-dideoxyinosine, and 9-(2-phosphonylmethoxyethyl)adenine, and they were highly resistant to phosphonoformic acid (PFA). Plaque-purified mutants were isolated from each of the mutant populations. The mutant phenotype was stable, because both of the plaque-purified mutants remained d4T resistant even after three passages in the absence of d4T. One of the plaque-purified mutants, designated D4R-3c, was further characterized. Compared with wild-type reverse transcriptase (RT), RT purified from D4R-3c was 3-fold resistant to inhibition by the 5'-triphosphate of d4T, 10-fold resistant to inhibition by the 5'-triphosphate of AZT, and 6-fold resistant to PFA. D4R-3c had a single point mutation in the RT-encoding region of the pol gene at position 2474, resulting in a Val to Ile mutation at codon 47 of the FIV RT. The role of this mutation in d4T resistance was confirmed by site-directed mutagenesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhan Yin ◽  
Nils Burger ◽  
Duvaraka Kula-Alwar ◽  
Dunja Aksentijević ◽  
Hannah R. Bridges ◽  
...  

AbstractMitochondrial complex I is central to the pathological reactive oxygen species (ROS) production that underlies cardiac ischemia–reperfusion (IR) injury. ND6-P25L mice are homoplasmic for a disease-causing mtDNA point mutation encoding the P25L substitution in the ND6 subunit of complex I. The cryo-EM structure of ND6-P25L complex I revealed subtle structural changes that facilitate rapid conversion to the “deactive” state, usually formed only after prolonged inactivity. Despite its tendency to adopt the “deactive” state, the mutant complex is fully active for NADH oxidation, but cannot generate ROS by reverse electron transfer (RET). ND6-P25L mitochondria function normally, except for their lack of RET ROS production, and ND6-P25L mice are protected against cardiac IR injury in vivo. Thus, this single point mutation in complex I, which does not affect oxidative phosphorylation but renders the complex unable to catalyse RET, demonstrates the pathological role of ROS production by RET during IR injury.


2000 ◽  
Vol 182 (19) ◽  
pp. 5479-5485 ◽  
Author(s):  
Helena I. M. Boshoff ◽  
Valerie Mizrahi

ABSTRACT A pyrazinamidase (PZase)-deficient pncA mutant ofMycobacterium tuberculosis, constructed by allelic exchange, was used to investigate the effects of heterologous amidase gene expression on the susceptibility of this organism to pyrazinamide (PZA) and related amides. The mutant was highly resistant to PZA (MIC, >2,000 μg/ml), in accordance with the well-established role ofpncA in the PZA susceptibility of M. tuberculosis (A. Scorpio and Y. Zhang, Nat. Med. 2:662–667, 1996). Integration of the pzaA gene encoding the major PZase/nicotinamidase from Mycobacterium smegmatis (H. I. M. Boshoff and V. Mizrahi, J. Bacteriol. 180:5809–5814, 1998) or the M. tuberculosis pncA gene into the pncAmutant complemented its PZase/nicotinamidase defect. In bothpzaA- and pncA-complemented mutant strains, the PZase activity was detected exclusively in the cytoplasm, suggesting an intracellular localization for PzaA and PncA. ThepzaA-complemented strain was hypersensitive to PZA (MIC, ≤10 μg/ml) and nicotinamide (MIC, ≥20 μg/ml) and was also sensitive to benzamide (MIC, 20 μg/ml), unlike the wild-type andpncA-complemented mutant strains, which were highly resistant to this amide (MIC, >500 μg/ml). This finding was consistent with the observation that benzamide is hydrolyzed by PzaA but not by PncA. Overexpression of PzaA also conferred sensitivity to PZA, nicotinamide, and benzamide on M. smegmatis (MIC, 150 μg/ml in all cases) and rendered Escherichia colihypersensitive for growth at low pH.


2021 ◽  
Vol 15 ◽  
Author(s):  
Esther Suk King Lai ◽  
Hisako Nakayama ◽  
Taisuke Miyazaki ◽  
Takanobu Nakazawa ◽  
Katsuhiko Tabuchi ◽  
...  

Neuroligin is a postsynaptic cell-adhesion molecule that is involved in synapse formation and maturation by interacting with presynaptic neurexin. Mutations in neuroligin genes, including the arginine to cystein substitution at the 451st amino acid residue (R451C) of neuroligin-3 (NLGN3), have been identified in patients with autism spectrum disorder (ASD). Functional magnetic resonance imaging and examination of post-mortem brain in ASD patients implicate alteration of cerebellar morphology and Purkinje cell (PC) loss. In the present study, we examined possible association between the R451C mutation in NLGN3 and synaptic development and function in the mouse cerebellum. In NLGN3-R451C mutant mice, the expression of NLGN3 protein in the cerebellum was reduced to about 10% of the level of wild-type mice. Elimination of redundant climbing fiber (CF) to PC synapses was impaired from postnatal day 10–15 (P10–15) in NLGN3-R451C mutant mice, but majority of PCs became mono-innervated as in wild-type mice after P16. In NLGN3-R451C mutant mice, selective strengthening of a single CF relative to the other CFs in each PC was impaired from P16, which persisted into juvenile stage. Furthermore, the inhibition to excitation (I/E) balance of synaptic inputs to PCs was elevated, and calcium transients in the soma induced by strong and weak CF inputs were reduced in NLGN3-R451C mutant mice. These results suggest that a single point mutation in NLGN3 significantly influences the synapse development and refinement in cerebellar circuitry, which might be related to the pathogenesis of ASD.


mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
Ana R. Pereira ◽  
Jen Hsin ◽  
Ewa Król ◽  
Andreia C. Tavares ◽  
Pierre Flores ◽  
...  

ABSTRACT A mechanistic understanding of the determination and maintenance of the simplest bacterial cell shape, a sphere, remains elusive compared with that of more complex shapes. Cocci seem to lack a dedicated elongation machinery, and a spherical shape has been considered an evolutionary dead-end morphology, as a transition from a spherical to a rod-like shape has never been observed in bacteria. Here we show that a Staphylococcus aureus mutant (M5) expressing the ftsZ G193D allele exhibits elongated cells. Molecular dynamics simulations and in vitro studies indicate that FtsZ G193D filaments are more twisted and shorter than wild-type filaments. In vivo , M5 cell wall deposition is initiated asymmetrically, only on one side of the cell, and progresses into a helical pattern rather than into a constricting ring as in wild-type cells. This helical pattern of wall insertion leads to elongation, as in rod-shaped cells. Thus, structural flexibility of FtsZ filaments can result in an FtsZ-dependent mechanism for generating elongated cells from cocci. IMPORTANCE The mechanisms by which bacteria generate and maintain even the simplest cell shape remain an elusive but fundamental question in microbiology. In the absence of examples of coccus-to-rod transitions, the spherical shape has been suggested to be an evolutionary dead end in morphogenesis. We describe the first observation of the generation of elongated cells from truly spherical cocci, occurring in a Staphylococcus aureus mutant containing a single point mutation in its genome, in the gene encoding the bacterial tubulin homologue FtsZ. We demonstrate that FtsZ-dependent cell elongation is possible, even in the absence of dedicated elongation machinery.


2012 ◽  
Vol 56 (4) ◽  
pp. 1990-1996 ◽  
Author(s):  
Alix Pantel ◽  
Stéphanie Petrella ◽  
Nicolas Veziris ◽  
Florence Brossier ◽  
Sylvaine Bastian ◽  
...  

ABSTRACTFluoroquinolone (FQ) resistance is emerging inMycobacterium tuberculosis. The main mechanism of FQ resistance is amino acid substitution within the quinolone resistance-determining region (QRDR) of the GyrA subunit of DNA gyrase, the sole FQ target inM. tuberculosis. However, substitutions in GyrB whose implication in FQ resistance is unknown are increasingly being reported. The present study clarified the role of four GyrB substitutions identified inM. tuberculosisclinical strains, two located in the QRDR (D500A and N538T) and two outside the QRDR (T539P and E540V), in FQ resistance. We measured FQ MICs and also DNA gyrase inhibition by FQs in order to unequivocally clarify the role of these mutations in FQ resistance. Wild-type GyrA, wild-type GyrB, and mutant GyrB subunits produced from engineeredgyrBalleles by mutagenesis were overexpressed inEscherichia coli, purified to homogeneity, and used to reconstitute highly active gyrase complexes. MICs and DNA gyrase inhibition were determined for moxifloxacin, gatifloxacin, ofloxacin, levofloxacin, and enoxacin. All these substitutions are clearly implicated in FQ resistance, underlining the presence of a hot spot region housing most of the GyrB substitutions implicated in FQ resistance (residues NTE, 538 to 540). These findings help us to refine the definition of GyrB QRDR, which is extended to positions 500 to 540.


2018 ◽  
Vol 1 (7) ◽  
pp. 3741-3746 ◽  
Author(s):  
María Sanromán-Iglesias ◽  
Charles H. Lawrie ◽  
Luis M. Liz-Marzán ◽  
Marek Grzelczak

2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Jamila Hirbawi ◽  
Kamila Bledzka ◽  
Yan Qing Ma ◽  
Jun Qin ◽  
Edward F Plow

Integrins are heterodimeric cell membrane receptors that regulate cell adhesion, migration, and survival. The kindlins are known to be key regulators of integrin activation, the transition from a low affinity, default state to a high affinity state for ligand. This function depends on their binding, together with talin, to the cytoplasmic tails (CT) of the β subunit of integrins. Kindlins are FERM domain containing proteins, and it is its F3 (PTB) subdomain of the FERM that is the primary binding site for integrin β CT. At its very C-terminus, beyond the F3, is a short extension of 21 amino acids, K2 660-680, and we have focused on the role of this region in the co-activator function of kindlin-2 (K2). For this analysis, we performed PAC-1 (antibody to detect activated αIIbβ3 integrin) binding assays in CHO cells stably expressing integrin α IIb β 3 that were transiently transfected with talin head domain and K2 mutants. Expression levels of all proteins were verified to be similar by western blotting and FACS. Truncation of K2 at residue 660 essentially eliminated the co-activator function of K2. Deletion of smaller segments also reduced co-activator activity by 50% to 100%. Deletion of just the last two amino acids in the sequence, W 679 V 680 , resulted in a 50% reduction in co-activator activity and a single point mutation of Y 673 A also led to a 50% loss of function. A combination mutant consisting of the W 679 V 680 deletion and the Y 673 point mutation resulted in 100% loss of kindlin-2 co-activator activity. Pull-down experiments performed using GST tagged β 3 CT and CHO lysates transfected with GFP-kindlin-2 forms suggested that the C-terminal deletion did not disrupt binding to β 3 CT. This observation was corroborated by surface plasmon resonance studies in which the binding of full-length K2 and K2Δ666C (Δ666) was compared, and their K D values for immobilized β3 CT were found to be essentially the same. Overall, these data establish an important and unanticipated role of the carboxy-terminal region of kindlin-2 in its integrin co-activator function that is not dependent of its binding to integrin.


1997 ◽  
Vol 41 (12) ◽  
pp. 2629-2633 ◽  
Author(s):  
M A Lety ◽  
S Nair ◽  
P Berche ◽  
V Escuyer

Ethambutol [EMB; dextro-2,2'-(ethylenediimino)-di-1-butanol] is an effective drug when used in combination with isoniazid for the treatment of tuberculosis. It inhibits the polymerization of arabinan in the arabinogalactan and lipoarabinomannan of the mycobacterial cell wall. Recent studies have shown that arabinosyltransferases could be targets of EMB. These enzymes are encoded by the emb locus that was identified in Mycobacterium smegmatis, Mycobacterium leprae, Mycobacterium avium, and Mycobacterium tuberculosis. We demonstrate that a missense mutation in the M. smegmatis embB gene, one of the genes of the emb locus, confers resistance to EMB. The level of resistance is not dependent on the number of copies of the mutated embB gene, indicating that this is a true mechanism of resistance. The mutation is located in a region of the EmbB protein that is highly conserved among the different mycobacterial species. We also identified in this region two other independent mutations that confer EMB resistance. Furthermore, mutations have recently been described in the same region of the EmbB protein from clinical EMB-resistant M. tuberculosis isolates. Together, these data strongly suggest that one of the mechanisms of resistance to EMB consists of missense mutations in a particular region of the EmbB protein that could be directly involved in the interaction with the EMB molecule.


Sign in / Sign up

Export Citation Format

Share Document