scholarly journals Translation of Pharmacodynamic Biomarkers of Antibiotic Efficacy in Specific Populations to Optimize Doses

Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1368
Author(s):  
Manjunath P. Pai ◽  
Ryan L. Crass

Antibiotic efficacy determination in clinical trials often relies on non-inferiority designs because they afford smaller study sample sizes. These efficacy studies tend to exclude patients within specific populations or include too few patients to discern potential differences in their clinical outcomes. As a result, dosing guidance in patients with abnormal liver and kidney function, age across the lifespan, and other specific populations relies on drug exposure-matching. The underlying assumption for exposure-matching is that the disease course and the response to the antibiotic are similar in patients with and without the specific condition. While this may not be the case, clinical efficacy studies are underpowered to ensure this is true. The current paper provides an integrative review of the current approach to dose selection in specific populations. We review existing clinical trial endpoints that could be measured on a more continuous rather than a discrete scale to better inform exposure–response relationships. The inclusion of newer systemic biomarkers of efficacy can help overcome the current limitations. We use a modeling and simulation exercise to illustrate how an efficacy biomarker can inform dose selection better. Studies that inform response-matching rather than exposure-matching only are needed to improve dose selection in specific populations.

2001 ◽  
Vol 45 (1) ◽  
pp. 13-22 ◽  
Author(s):  
G. L. Drusano ◽  
S. L. Preston ◽  
C. Hardalo ◽  
R. Hare ◽  
C. Banfield ◽  
...  

ABSTRACT One of the most challenging issues in the design of phase II/III clinical trials of antimicrobial agents is dose selection. The choice is often based on preclinical data from pharmacokinetic (PK) studies with animals and healthy volunteers but is rarely linked directly to the target organisms except by the MIC, an in vitro measure of antimicrobial activity with many limitations. It is the thesis of this paper that rational dose-selection decisions can be made on the basis of the pharmacodynamics (PDs) of the test agent predicted by a mathematical model which uses four data sets: (i) the distribution of MICs for clinical isolates, (ii) the distribution of the values of the PK parameters for the test drug in the population, (iii) the PD target(s) developed from animal models of infection, and (iv) the protein binding characteristics of the test drug. In performing this study with the new anti-infective agent evernimicin, we collected a large number (n = 4,543) of recent clinical isolates of gram-positive pathogens (Streptococcus pneumoniae,Enterococcus faecalis and Enterococcus faecium, and Staphylococcus aureus) and determined the MICs using E-test methods (AB Biodisk, Stockholm, Sweden) for susceptibility to evernimicin. Population PK data were collected from healthy volunteers (n = 40) and patients with hypoalbuminemia (n = 12), and the data were analyzed by using NPEM III. PD targets were developed with a neutropenic murine thigh infection model with three target pathogens: S. pneumoniae (n = 5), E. faecalis(n = 2), and S. aureus (n= 4). Drug exposure or the ratio of the area under the concentration-time curve/MIC (AUC/MIC) was found to be the best predictor of microbiological efficacy. There were three possible microbiological results: stasis of the initial inoculum at 24 h (107 CFU), log killing (pathogen dependent, ranging from 1 to 3 log10), or 90% maximal killing effect (90%E max). The levels of protein binding in humans and mice were similar. The PK and PD of 6 and 9 mg of evernimicin per kg of body weight were compared; the population values for the model parameters and population covariance matrix were used to generate five Monte Carlo simulations with 200 subjects each. The fractional probability of attaining the three PD targets was calculated for each dose and for each of the three pathogens. All differences in the fractional probability of attaining the target AUC/MIC in this PD model were significant. For S. pneumoniae, the probability of attaining all three PD targets was high for both doses. For S. aureus and enterococci, there were increasing differences between the 6- and 9-mg/kg evernimicin doses for reaching the 2 log killing (S. aureus), 1 log killing (enterococci), or 90%E max AUC/MIC targets. This same approach may also be used to set preliminary in vitro MIC breakpoints.


2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Amit V. Desai ◽  
Laura L. Kovanda ◽  
William W. Hope ◽  
David Andes ◽  
Johan W. Mouton ◽  
...  

ABSTRACT Isavuconazole, the active moiety of the water-soluble prodrug isavuconazonium sulfate, is a triazole antifungal agent for the treatment of invasive fungal infections. The purpose of this analysis was to characterize the isavuconazole exposure-response relationship for measures of efficacy and safety in patients with invasive aspergillosis and infections by other filamentous fungi from the SECURE clinical trial. Two hundred thirty-one patients who received the clinical dosing regimen and had exposure parameters were included in the analysis. The primary drug exposure parameters included were predicted trough steady-state plasma concentrations, predicted trough concentrations after 7 and 14 days of drug administration, and area under the curve estimated at steady state (AUCss). The exposure parameters were analyzed against efficacy endpoints that included all-cause mortality through day 42 in the intent-to-treat (ITT) and modified ITT populations, data review committee (DRC)-adjudicated overall response at end of treatment (EOT), and DRC-adjudicated clinical response at EOT. The safety endpoints analyzed were elevated or abnormal alanine aminotransferase, increased aspartate aminotransferase, and a combination of the two. The endpoints were analyzed using logistic regression models. No statistically significant relationship (P > 0.05) was found between isavuconazole exposure and either efficacy or safety endpoints. The lack of association between exposure and efficacy indicates that the isavuconazole exposures achieved by clinical dosing were appropriate for treating the infecting organisms in the SECURE study and that increases in alanine or aspartate aminotransferase were not related to increase in exposures. Without a clear relationship, there is no current clinical evidence for recommending routine therapeutic drug monitoring for isavuconazole.


Sign in / Sign up

Export Citation Format

Share Document