scholarly journals Mining the Biosynthetic Potential for Specialized Metabolism of a Streptomyces Soil Community

Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 271 ◽  
Author(s):  
Matthieu Nicault ◽  
Abdoul-Razak Tidjani ◽  
Anthony Gauthier ◽  
Stéphane Dumarcay ◽  
Eric Gelhaye ◽  
...  

The diversity and distribution of specialized metabolite gene clusters within a community of bacteria living in the same soil habitat are poorly documented. Here we analyzed the genomes of 8 Streptomyces isolated at micro-scale from a forest soil that belong to the same species or to different species. The results reveal high levels of diversity, with a total of 261 biosynthesis gene clusters (BGCs) encoding metabolites such as terpenes, polyketides (PKs), non-ribosomal peptides (NRPs) and ribosomally synthesized and post-translationally modified peptides (RiPPs) with potential bioactivities. A significant part of these BGCs (n = 53) were unique to only one strain when only 5 were common to all strains. The metabolites belong to very diverse chemical families and revealed that a large diversity of metabolites can potentially be produced in the community. Although that analysis of the global metabolome using GC-MS revealed that most of the metabolites were shared between the strains, they exhibited a specific metabolic pattern. We also observed that the presence of these accessory pathways might result from frequent loss and gain of genes (horizontal transfer), showing that the potential of metabolite production is a dynamic phenomenon in the community. Sampling Streptomyces at the community level constitutes a good frame to discover new biosynthetic pathways and it appears as a promising reservoir for the discovery of new bioactive compounds.

2016 ◽  
Vol 69 (2) ◽  
pp. 129 ◽  
Author(s):  
John A. Kalaitzis ◽  
Shane D. Ingrey ◽  
Rocky Chau ◽  
Yvette Simon ◽  
Brett A. Neilan

Historically microbial natural product biosynthesis pathways were elucidated mainly by isotope labelled precursor directed feeding studies. Now the genetics underpinning the assembly of microbial natural products biosynthesis is so well understood that some pathways and their products can be predicted from DNA sequences alone. The association between microbial natural products and their biosynthesis gene clusters is now driving the field of ‘genetics guided natural product discovery’. This account overviews our research into cyanotoxin biosynthesis before the genome sequencing era through to some recent discoveries resulting from the mining of Australian biota for natural product biosynthesis pathways.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jessie James Limlingan Malit ◽  
Chuanhai Wu ◽  
Ling-Li Liu ◽  
Pei-Yuan Qian

Thioamidated ribosomally synthesized and post-translationally modified peptides (RiPPs) are recently characterized natural products with wide range of potent bioactivities, such as antibiotic, antiproliferative, and cytotoxic activities. These peptides are distinguished by the presence of thioamide bonds in the peptide backbone catalyzed by the YcaO-TfuA protein pair with its genes adjacent to each other. Genome mining has facilitated an in silico approach to identify biosynthesis gene clusters (BGCs) responsible for thioamidated RiPP production. In this work, publicly available genomic data was used to detect and illustrate the diversity of putative BGCs encoding for thioamidated RiPPs. AntiSMASH and RiPPER analysis identified 613 unique TfuA-related gene cluster families (GCFs) and 797 precursor peptide families, even on phyla where the presence of these clusters have not been previously described. Several additional biosynthesis genes are colocalized with the detected BGCs, suggesting an array of possible chemical modifications. This study shows that thioamidated RiPPs occupy a widely unexplored chemical landscape.


2018 ◽  
Author(s):  
Shaozhou Zhu ◽  
Guojun Zheng

ABSTRACTRibosomally synthesized and post-translationally modified peptides (RiPPs) are a rapidly emerging group of natural products with diverse biological activity. Most of their biosynthetic mechanisms are well studied and the “genome mining” strategy based on homology has led to the unearthing of many new ribosomal natural products, including lantipeptides, lasso peptides, cyanobactins. These precursor-centric or biosynthetic protein-centric genome mining strategies have encouraged the discovery of RiPPs natural products. However, a limitation of these strategies is that the newly identified natural products are similar to the known products and novel families of RiPP pathways were overlooked by these strategies. In this work, we applied a transcription-factor centric genome mining strategy and diverse unique crosslinked RiPP gene clusters were predicted in several sequenced microorganisms. Our research could significantly expand the category of biosynthetic pathways of RiPP natural products and predict new resources for novel RiPPs.


Author(s):  
Bin Wei ◽  
Ao‐Qi Du ◽  
Zhen‐Yi Zhou ◽  
Cong Lai ◽  
Wen‐Chao Yu ◽  
...  

2018 ◽  
Author(s):  
Javier Santos-Aberturas ◽  
Govind Chandra ◽  
Luca Frattaruolo ◽  
Rodney Lacret ◽  
Thu H. Pham ◽  
...  

ABSTRACTThe rational discovery of new specialized metabolites by genome mining represents a very promising strategy in the quest for new bioactive molecules. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural product that derive from genetically encoded precursor peptides. However, RiPP gene clusters are particularly refractory to reliable bioinformatic predictions due to the absence of a common biosynthetic feature across all pathways. Here, we describe RiPPER, a new tool for the family-independent identification of RiPP precursor peptides and apply this methodology to search for novel thioamidated RiPPs in Actinobacteria. Until now, thioamidation was believed to be a rare post-translational modification, which is catalyzed by a pair of proteins (YcaO and TfuA) in Archaea. In Actinobacteria, the thioviridamide-like molecules are a family of cytotoxic RiPPs that feature multiple thioamides, and it has been proposed that a YcaO-TfuA pair of proteins also catalyzes their formation. Potential biosynthetic gene clusters encoding YcaO and TfuA protein pairs are common in Actinobacteria but the chemical diversity generated by these pathways is almost completely unexplored. A RiPPER analysis reveals a highly diverse landscape of precursor peptides encoded in previously undescribed gene clusters that are predicted to make thioamidated RiPPs. To illustrate this strategy, we describe the first rational discovery of a new family of thioamidated natural products, the thiovarsolins from Streptomyces varsoviensis.


2021 ◽  
Author(s):  
Veilumuthu P ◽  
Nagarajan T ◽  
Sasikumar S ◽  
Siva R ◽  
J Godwin Christopher

Abstract Streptomyces species is one among the dominant group of bacteria in the family Actinobacteria with a rich repertoire of secondary metabolites. Secondary metabolites with antimicrobial activity and plant growth promotor have been isolated from various Streptomyces sp. Here in this investigation, we present the draft genome of a new species, Streptomyces sp. VITGV156 isolated from healthy tomato plant (Lycopersicon esculentum) which has some rare antimicrobial secondary metabolites, like coelichelin, fluostatins, vicenistatin, nystatin, sipanmycin, and informatipeptin. The genome is 8.18 Mb in size with 6,259 protein coding genes. The average GC content of the genome is 72.61 %. Preliminary analysis with antiSMASH 6.0 revealed the presence of 29 biosynthetic gene clusters for the synthesis of potential secondary metabolites. These includes 4 NRPS (non – ribosomal peptide synthetase), 7 PKS (Polyketide Synthases), 2 RiPP (Ribosomally synthesized and post-translationally modified peptides) clusters. When we look into genes associated with secondary metabolites, 406 genes are present which includes 184 genes for cofactor and vitamins, 72 genes for terpenoids and polyketides, 70 genes for xenobiotics and 80 genes for other metabolites are present. Comparative genome analysis of VITGV156 with its closest neighbor Streptomyces luteus strain TRM45540 revealed ANI 91.22% and dDDH value 44.00%.


2021 ◽  
Author(s):  
◽  
Luke Stevenson

<p>Antibiotic discovery rates dramatically declined following the “golden age” of the 1940’s to the 1960’s. The platforms that underpinned that age of discovery rested upon laboratory cultivation of a small clade of bacteria, the actinomycetes, primarily isolated from soil environments. Fermentation extracts of these isolated bacteria have provided the majority of antibiotics and anticancer small molecules still used today. By applying modern genetic analysis techniques to these same environmental sources that have previously yielded such success, we can uncover new biosynthetic pathways, and bioactive compounds. The work described in this thesis investigated New Zealand soil metagenomes for this purpose.  Four large metagenome libraries were constructed from the microbiomes of diverse soil environments. These were then interrogated by a functional screening approach in a knockout Escherichia coli strain, to recover a large collection of the biosynthetic gene clusters responsible for bacterial secondary metabolite production. Using different modes of bioinformatic analysis, these gene clusters were demonstrated to have both phylogenetic divergence, and functional difference from bacterial biosynthesis pathways previously discovered from culture based studies.  Two additional biosynthetic pathways were recovered from one of these metagenome libraries, and in each case found to have novel genetic features. These gene clusters were further studied by heterologous expression within Streptomyces albus production hosts. One of these gene clusters produced small aromatic polyketide compounds, the structure of one of which was solved by chemical analytic techniques, and found to be a new chemical entity.  The second gene cluster was demonstrated to have similarity to known aureolic acid biosynthesis gene clusters – a class of potent anticancer natural products. Heterologous expression resulted in the production of many metabolites, two of which were characterised and found to be new members of this chemical class.  The research in this thesis both validates the use of metagenomic analysis for future natural product discovery efforts, and adds to a growing body of evidence that understudied clades of bacteria have an untapped biosynthetic potential that can be accessed by metagenomic methods.</p>


2012 ◽  
Vol 160 (1-2) ◽  
pp. 64-71 ◽  
Author(s):  
Anindita Sarkar ◽  
Alexander N. Funk ◽  
Kirstin Scherlach ◽  
Fabian Horn ◽  
Volker Schroeckh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document