scholarly journals High-Carbohydrate Diet Alleviates the Oxidative Stress, Inflammation and Apoptosis of Megalobrama amblycephala Following Dietary Exposure to Silver Nanoparticles

Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1343
Author(s):  
Fang Chen ◽  
Cai-Yuan Zhao ◽  
Jun-Feng Guan ◽  
Xiao-Cheng Liu ◽  
Xiang-Fei Li ◽  
...  

A 12-week feeding trial was performed to evaluate the effects of high-carbohydrate diet on oxidative stress, inflammation and apoptosis induced by silver nanoparticles (Ag-NPs) in M. amblycephala. Fish (20.12 ± 0.85 g) were randomly fed four diets (one control diet (C, 30% carbohydrate), one control diet supplemented with 100 mg kg−1 Ag-NPs (CS), one high-carbohydrate diet (HC, 45% carbohydrate) and one HC diet supplemented with 100 mg kg−1 Ag-NPs (HCS)). The results indicated that weight gain rate (WGR), specific growth rate (SGR), antioxidant enzyme (SOD and CAT) activities and expression of Trx, Cu/Zn-SOD, Mn-SOD, CAT and GPx1 of fish fed CS diet were all remarkably lower than those of other groups, whereas the opposite was true for plasma IL 1β and IL 6 levels, liver ROS contents, hepatocytes apoptotic rate, AMP/ATP ratio, AMPKα, P 53 and caspase 3 protein contents and mRNA levels of AMPKα 1, AMPKα 2, TXNIP, NF-κB, TNFα, IL 1β, IL 6, P 53, Bax and caspase 3. However, high-carbohydrate diet remarkably increased WGR, SGR, liver SOD and CAT activities, AMPKα protein content and mRNA levels of antioxidant genes (Cu/Zn-SOD, Mn-SOD, CAT and GPx1), anti-inflammatory cytokines (IL 10) and anti-apoptotic genes (Bcl 2) of fish facing Ag-NPs compared with the CS group, while the opposite was true for liver ROS contents, hepatocytes apoptotic rate, P 53 and caspase 3 protein contents, as well as mRNA levels of TXNIP, NF-κB, TNFα, IL 1β, IL 6, P 53, Bax and caspase 3. Overall, high-carbohydrate diet could attenuate Ag-NPs-induced hepatic oxidative stress, inflammation and apoptosis of M. amblycephala through AMPK activation.

2020 ◽  
Author(s):  
Chao Xu ◽  
Wen-Bin Liu ◽  
Hua-Juan Shi ◽  
Xiang-Fei Li

Abstract Background: The impairment of immunity induced by high-carbohydrate diet is closely associated with the development of glucose metabolic disorders. In the study of diabetes, benfotiamine can prevent β-cell dysfunction by inhibiting inflammation, thereby improving insulin resistance. However, information regarding the effects of this substance on aquatic animals is extremely scarce.Methods: A 12-week nutritional research was conducted to evaluate the influences of benfotiamine on the growth performance, oxidative stress, inflammation and apoptosis in Megalobrama amblycephala (45.25 ± 0.34 g) fed high-carbohydrate (HC) diets. Six experimental diets were formulated, containing a control diet (30% carbohydrate, C), a HC diet (43% carbohydrate), and the HC diet supplemented with four graded benfotiamine levels (0.7125 (HCB1), 1.425 (HCB2), 2.85 (HCB3), and 5.7 (HCB4) mg/kg).Results: HC diet intake remarkably decreased daily growth coefficient (DGC), growth rate per metabolic body weight (GRMBW), feed intake (FI), liver antioxidant enzymes activities, sirtuin-1 (SIRT1) protein expression as well as liver mRNA levels of SIRT1, nuclear factor erythroid 2-related factor 2 (Nrf2), catalase (CAT), manganese superoxide dismutase (Mn-SOD), interleukin10 (IL10) than those of the control group, but the opposite was true for plasma activities of alanine transaminase (AST) and aspartate aminotransferase (ALT), and contents of interleukin 1β (IL1β) and interleukin 6 (IL6), liver contents of malondialdehyde (MDA), and mRNA levels of kelch-like ECH associating protein 1 (Keap1), nuclear factor kappa B (NF-κB), tumour necrosis factor α (TNF α), IL1β, IL6, Bax, Caspase 3, Caspase 9 and P53. As with benfotiamine supplementation, HCB2 diet remarkably increased DGC, GRMBW, liver antioxidant enzymes activities, SIRT1 protein expression as well as liver mRNA levels of SIRT1, Nrf2, CAT, Mn-SOD, IL10 and Bcl2, while the opposite was true for plasma activities of AST and ALT, and contents of IL1β and IL6, liver MDA contents as well as mRNA levels of Keap1, NF-κB, TNF α, IL1β, IL6, Bax, Caspase 3, Caspase 9 and P53.Conclusion: Benfotiamine at 1.425 mg/kg can improve the growth performance and alleviate the oxidative stress, inflammation and apoptosis of M. amblycephala fed HC diets through the activation of the SIRT1 pathway.


1969 ◽  
Vol 44 (1) ◽  
pp. 107-113 ◽  
Author(s):  
E. BLÁZQUEZ ◽  
CLEMENTE LOPEZ QUIJADA

SUMMARY When groups of rats were kept on control and high-carbohydrate diets from the end of lactation until their body weight reached 150 g. it was found that the animals fed on the high-carbohydrate diet gained weight more rapidly, with an increase in fat deposits. Glucose and plasma insulin in both groups were compared with the amounts of hormone extracted from their pancreases. When the rats on the control diet were killed the insulin and glucose plasma levels were 40 ± 3 μu./ml. and 156·69 ± 13 mg./100 ml. respectively. After 17–20 hr. fasting these values decreased significantly (P < 0·01) to 18 ± 1·5 μu./ml. and 116 ± 13 mg./ml. The amount of insulin in the pancreas was not modified by fasting. In the rats fed on the high-carbohydrate diet the plasma insulin and glucose values were higher than those in the control rats (50 ± 3·8 μu./ml. and 187 ± 19 mg./100 ml.); after 17–20 hr. starvation the glucose levels were reduced and the plasma insulin concentration remained higher (44 ± 2·9 μu./ml.); the insulin content of the pancreas was higher than in the control rats. In vitro the epididymal fat and the diaphragm of the rats on the high-carbohydrate diet were less sensitive to insulin than the same tissues in the controls.


Author(s):  
Funmilola Elizabeth Audu ◽  
Mohammed Aliyu Usman ◽  
Foredapwa Nzedeno Raphael ◽  
Aminu Abdulmutallab ◽  
Faruk Moses Jimoh ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2140
Author(s):  
Yumiko Takahashi ◽  
Yutaka Matsunaga ◽  
Hiroki Yoshida ◽  
Terunaga Shinya ◽  
Ryo Sakaguchi ◽  
...  

We examined the effect of dietary carbohydrate intake on post-exercise glycogen recovery. Male Institute of Cancer Research (ICR) mice were fed moderate-carbohydrate chow (MCHO, 50%cal from carbohydrate) or high-carbohydrate chow (HCHO, 70%cal from carbohydrate) for 10 days. They then ran on a treadmill at 25 m/min for 60 min and administered an oral glucose solution (1.5 mg/g body weight). Compared to the MCHO group, the HCHO group showed significantly higher sodium-D-glucose co-transporter 1 protein levels in the brush border membrane fraction (p = 0.003) and the glucose transporter 2 level in the mucosa of jejunum (p = 0.004). At 30 min after the post-exercise glucose administration, the skeletal muscle and liver glycogen levels were not significantly different between the two diet groups. The blood glucose concentration from the portal vein (which is the entry site of nutrients from the gastrointestinal tract) was not significantly different between the groups at 15 min after the post-exercise glucose administration. There was no difference in the total or phosphorylated states of proteins related to glucose uptake and glycogen synthesis in skeletal muscle. Although the high-carbohydrate diet significantly increased glucose transporters in the jejunum, this adaptation stimulated neither glycogen recovery nor glucose absorption after the ingestion of post-exercise glucose.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1638
Author(s):  
Ju-Hyoung Park ◽  
Eun-Kyung Ahn ◽  
Min Hee Hwang ◽  
Young Jin Park ◽  
Young-Rak Cho ◽  
...  

Amomum tsao-ko Crevost et Lemaire (Zingiberaceae) is a medicinal herb found in Southeast Asia that is used for the treatment of malaria, abdominal pain, dyspepsia, etc. The aim of this study was to investigate the effect of an ethanol extract of Amomum tsao-ko (EAT) on obesity and hyperlipidemia in C57BL/6 mice fed a high-carbohydrate diet (HCD). First, the mice were divided into five groups (n = 6/group) as follows: normal diet, HCD, and HCD+EAT (100, 200, and 400 mg/kg/day), which were orally administered with EAT daily for 84 days. Using microcomputed tomography (micro-CT) analysis, we found that EAT inhibited not only body-weight gain, but also visceral fat and subcutaneous fat accumulation. Histological analysis confirmed that EAT decreased the size of fat tissues. EAT consistently improved various indices, including plasma levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein, high-density lipoprotein, atherogenic index, and cardiac risk factors, which are related to dyslipidemia—a major risk factor for heart disease. The contents of TC and TG, as well as the lipid droplets of HCD-induced hepatic accumulation in the liver tissue, were suppressed by EAT. Taken together, these findings suggest the possibility of developing EAT as a therapeutic agent for improving HCD-induced obesity and hyperlipidemia.


Sign in / Sign up

Export Citation Format

Share Document