scholarly journals Mitochondrial Uncoupling Proteins (UCPs) as Key Modulators of ROS Homeostasis: A Crosstalk between Diabesity and Male Infertility?

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1746
Author(s):  
Bruno S. Monteiro ◽  
Laís Freire-Brito ◽  
David F. Carrageta ◽  
Pedro F. Oliveira ◽  
Marco G. Alves

Uncoupling proteins (UCPs) are transmembrane proteins members of the mitochondrial anion transporter family present in the mitochondrial inner membrane. Currently, six homologs have been identified (UCP1-6) in mammals, with ubiquitous tissue distribution and multiple physiological functions. UCPs are regulators of key events for cellular bioenergetic metabolism, such as membrane potential, metabolic efficiency, and energy dissipation also functioning as pivotal modulators of ROS production and general cellular redox state. UCPs can act as proton channels, leading to proton re-entry the mitochondrial matrix from the intermembrane space and thus collapsing the proton gradient and decreasing the membrane potential. Each homolog exhibits its specific functions, from thermogenesis to regulation of ROS production. The expression and function of UCPs are intimately linked to diabesity, with their dysregulation/dysfunction not only associated to diabesity onset, but also by exacerbating oxidative stress-related damage. Male infertility is one of the most overlooked diabesity-related comorbidities, where high oxidative stress takes a major role. In this review, we discuss in detail the expression and function of the different UCP homologs. In addition, the role of UCPs as key regulators of ROS production and redox homeostasis, as well as their influence on the pathophysiology of diabesity and potential role on diabesity-induced male infertility is debated.

Toxins ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 502
Author(s):  
Shoma Tanaka ◽  
Hiroshi Watanabe ◽  
Takehiro Nakano ◽  
Tadashi Imafuku ◽  
Hiromasa Kato ◽  
...  

Adipose tissue inflammation appears to be a risk factor for the progression of chronic kidney disease (CKD), but the effect of CKD on adipose tissue inflammation is poorly understood. The purpose of this study was to clarify the involvement of uremic toxins (indoxyl sulfate (IS), 3-indoleacetic acid, p-cresyl sulfate and kynurenic acid) on CKD-induced adipose tissue inflammation. IS induces monocyte chemoattractant protein-1 (MCP-1) expression and reactive oxygen species (ROS) production in the differentiated 3T3L-1 adipocyte. An organic anion transporter (OAT) inhibitor, an NADPH oxidase inhibitor or an antioxidant suppresses the IS-induced MCP-1 expression and ROS production, suggesting the OAT/NADPH oxidase/ROS pathway is involved in the action of IS. Co-culturing 3T3L-1 adipocytes and mouse macrophage cells showed incubating adipocytes with IS increased macrophage infiltration. An IS-overload in healthy mice increased IS levels, oxidative stress and MCP-1 expression in epididymal adipose tissue compared to unloaded mice. Using 5/6-nephrectomized mice, the administration of AST-120 suppressed oxidative stress and the expression of MCP-1, F4/80 and TNF-α in epididymal adipose tissue. These collective data suggest IS could be a therapeutic target for the CKD-related inflammatory response in adipose tissue, and that AST-120 could be useful for the treatment of IS-induced adipose tissue inflammation.


2009 ◽  
Vol 296 (2) ◽  
pp. C355-C362 ◽  
Author(s):  
Keir J. Menzies ◽  
Brian H. Robinson ◽  
David A. Hood

Mitochondrial (mt)DNA mutations contribute to various disease states characterized by low ATP production. In contrast, thyroid hormone [3,3′,5-triiodothyronine (T3)] induces mitochondrial biogenesis and enhances ATP generation within cells. To evaluate the role of T3-mediated mitochondrial biogenesis in patients with mtDNA mutations, three fibroblast cell lines with mtDNA mutations were evaluated, including two patients with Leigh's syndrome and one with hypertrophic cardiomyopathy. Compared with control cells, patient fibroblasts displayed similar levels of mitochondrial mass, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), mitochondrial transcription factor A (Tfam), and uncoupling protein 2 (UCP2) protein expression. However, patient cells exhibited a 1.6-fold elevation in ROS production, a 1.7-fold elevation in cytoplasmic Ca2+ levels, a 1.2-fold elevation in mitochondrial membrane potential, and 30% less complex V activity compared with control cells. Patient cells also displayed 20–25% reductions in both cytochrome c oxidase (COX) activity and MnSOD protein levels compared with control cells. After T3 treatment of patient cells, ROS production was decreased by 40%, cytoplasmic Ca2+ was reduced by 20%, COX activity was increased by 1.3-fold, and ATP levels were elevated by 1.6-fold, despite the absence of a change in mitochondrial mass. There were no significant alterations in the protein expression of PGC-1α, Tfam, or UCP2 in either T3-treated patient or control cells. However, T3 restored the mitochondrial membrane potential, complex V activity, and levels of MnSOD to normal values in patient cells and elevated MnSOD levels by 21% in control cells. These results suggest that T3 acts to reduce cellular oxidative stress, which may help attenuate ROS-mediated damage, along with improving mitochondrial function and energy status in cells with mtDNA defects.


2021 ◽  
Author(s):  
Vegim Zhaku ◽  
Ashok Agarwal ◽  
Sheqibe Beadini ◽  
Ralf Henkel ◽  
Renata Finelli ◽  
...  

Within the male reproductive system, oxidative stress (OS) has been identified as prevailing etiology of male infertility. The effects of reactive oxygen species (ROS) on male fertility depend on the dimensions, “modus operandi” of the ROS and the oxido-reduction potential (ORP) of the male reproductive tract. Hereupon, for an adequate response to OS, the cells of our body are endowed with a well-sophisticated system of defense in order to be protected. Various antioxidant enzymes and small molecular free radical scavengers, maintain the delicate balance between oxidants and reductants (antioxidants), crucial to cellular function and fertility. Therapeutic use of antioxidants is an optimal and coherent option in terms of mitigating OS and improving semen parameters. Therefore, recognizing and managing OS through either decreasing ROS levels or by increasing antioxidant force, appear to be a requesting approach in the management of male infertility. However, a clear defined attitude of the experts about the clinical efficacy of antioxidant therapy is still deprived. Prominently, antioxidant such as coenzyme Q10, vitamin C and E, lycopene, carnitine, zinc and selenium have been found useful in controlling the balance between ROS production and scavenging activities. In spite of that, healthy lifestyle, without smoke and alcohol, everyday exercise, reduction of psychological stress and quality well-designed meals, are habits that can overturn male infertility.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yumin Zheng ◽  
Li Dong ◽  
Na Liu ◽  
Xiaoguang Luo ◽  
Zhiyi He

Objectives. Parkinson’s disease (PD) is a common neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons in the substantia nigra. The present study investigated miR-141-3p/sirtuin1 (SIRT1) activity in a 1-methyl-4-phenylpyridinium- (MPP+-) induced PC12-cell model of PD. Methods. PC12 cells were exposed to MMP+ following induction of differentiation by nerve growth factor (NGF). miR-141-3p and SIRT1 expressions were examined using RT-qPCR and western blot. Cell viability was evaluated using the MTT assay. Apoptosis percentage, reactive oxygen species (ROS) production, and mitochondrial membrane potential (Δψm) were evaluated using flow cytometry. Expression of Nuclear factor-kappa B- (NF-κB-) related proteins was determined by western blot. Bioinformatic analysis, RT-qPCR, and luciferase reporter assay were used to confirm the interaction between miR-141-3p and SIRT1. Results. miR-141-3p was upregulated, and SIRT1 was downregulated in MPP+-treated PC12 cells. MPP+ treatment also upregulated nitric oxide synthase 1 (Nos1) and α-synuclein. miR-141-3p induced apoptosis, oxidative stress, mitochondrial dysfunction, and downregulated the SIRT1 mRNA expression. The luciferase reporter assay showed that SIRT1 was the target of miR-141-3p. SIRT1 transfection attenuated apoptosis, ROS production and maintained Δψm. SIRT1 also downregulated Nos1, tumor necrosis factor-α (TNF-α), interleukin 1 beta (IL-1β), interleukin 6(IL-6) and upregulated B cell lymphoma 2 (Bcl-2) protein. In addition, SIRT1 activator resveratrol blocked the effects of miR-141-3p mimic on Nos1, α-synuclein, and mitochondrial membrane potential. SIRT1 inhibitor sirtinol reversed the biological effects of miR-141-3p. Conclusion. Increased miR-141-3p induced apoptosis, oxidative stress, and mitochondrial dysfunction in MPP+-treated PC12 cells by directly targeting the SIRT1 expression. Our study provided a potential therapeutic strategy for PD.


2015 ◽  
Vol 36 (5) ◽  
pp. 2063-2071 ◽  
Author(s):  
Shing Chan ◽  
Godfrey Chifung Chan ◽  
Jieyu Ye ◽  
Qizhou Lian ◽  
Jianliang Chen ◽  
...  

Background/Aims: Thalassaemia accompanied with iron-overload is common in Hong Kong. Iron-overload induced cardiomyopathy is the commonest cause of morbidity and mortality in patients with β-thalassaemia. Chronic iron-overload due to blood transfusion can cause cardiac failure. Decreased antioxidant defence and increased ROS production may lead to oxidative stress and cell injury. Iron-overload may lead to heart tissue damage through lipid peroxidation in response to oxidative stress, and a great diversity of toxic aldehydes are formed when lipid hydroperoxides break down in heart and plasma. Methods: Iron entry into embryonic heart H9C2 cells was determined by calcein assay using a fluorometer. Reactive oxygen species (ROS) production in cells treated with FeCl3 or thrombopoietin (TPO) was monitored by using the fluorescent probe H2DCFDA. Changes in mitochondrial membrane potential of H9C2 cells were quantified by using flow cytometry. Results: We demonstrated that iron induced oxidative stress and apoptosis in cardiomyocytes, and that iron increased ROS production and reduced cell viability in a dose-dependent manner. Iron treatment increased the proportion of cells with JC-1 monomers, indicating a trend of drop in the mitochondrial membrane potential. TPO exerted a cardio-protective effect on iron-induced apoptosis. Conclusions: These findings suggest that iron-overload leads to the generation of ROS and further induces apoptosis in cardiomyocytes via mitochondrial pathways. TPO might exert a protective effect on iron-overload induced apoptosis via inhibiting oxidative stress and suppressing the mitochondrial pathways in cardiomyocytes.


2022 ◽  
Vol 11 (1) ◽  
pp. e43211125191
Author(s):  
Luana Nayara Gallego Adami ◽  
Valter Luiz Maciel Junior ◽  
João Diego Losano

Male infertility is one important factor among the multifactorial causes of couple infertility, being oxidative stress one of the main related sources. Sperm is a specialized cell extremely susceptible to stress. To understand and mitigate this event, many studies have used different antioxidants, orally or in vitro supplementation, trying to improve sperm quality and function. Considering the extensive available literature regarding approaches and attempts to solve male fertility issues, the aim of this review is evaluating the effects of antioxidant supplementation on sperm, in both humans and experimental models with animals. This review selected original data from PubMed. The keywords used were: antioxidant, sperm, male fertility, antioxidant supplementation, male infertility; and the term "rodents" was added to the descriptors “antioxidant” and “male fertility”. Only studies published in indexed journals, in English, between 2015 and 2019 were included. This review involves i) human sperm and ii) rodent sperm. For the human approach, the search retrieved 496 articles and 80 were included, among which 28 studies were of in vitro antioxidant supplementation, 19 involved oral antioxidant supplementation and the remaining 33 concerned quantification of oxidants and antioxidants already present in the seminal samples. For the rodent approach, 152 articles were retrieved and 52 were included: 3 of varicocele, 11 of diabetes, 10 of therapeutic drugs, 3 of physical exercise, 10 of environmental exposure and 3 of heat stress. The remaining studies involved oxidative stress status in experimental models. Antioxidants use for reproductive purposes is increasing in an attempt to achieve better gametes and embryos. Vitamins C, B and E, selenium and zinc are the most commonly used antioxidants, with remarkable evidences in improving pathophysiological seminal conditions.


2017 ◽  
Author(s):  
Noor Shareena Aisha Abdul Khalid ◽  
Zakiah Jubri

Background: Oxidative stress plays an important role in the pathogenesis of heart diseases. Antioxidants such as palm tocotrienol-rich fraction (TRF) can reduce oxidative stress, hence preventing and reducing the risk of heart disease. This study was aimed to determine the protective effects of TRF against hydrogen peroxide (H2O2 ) - induced oxidative stress in neonatal rat cardiomyocytes (NRCM). Methods: The NRCM were divided into five groups: (1) control, (2) cells treated with TRF (10 µg/ml) for 24 hours, (3) cells subjected to H2O2 (0.5 mM ) for 30 minutes, (4) cells pre-treated with TRF, and (5) cells post-treated with TRF. The IC50 of H2O2 (0 – 5 mM ) and the effective dose of TRF (0 – 25 µg/ml) were determined using the MTS cell viability assay. Meanwhile, ELISA was used to measure the level of reactive oxygen species (ROS). The presence of superoxides and H2O2 were detected by dihydroethidium and 5-(and-6 ) - carboxy -2′,7′-dichlorodihydrofluorescein diacetate respectively. Flowcytometry analysis was conducted to determine the presence of apoptosis and measure the mitochondrial membrane potential, whereby the former involved the use of Annexin V-FITC stain while the latter JC-1 stain. The gene expressions of antioxidant (SOD, CAT, GPx) and apoptosis (Bax, Bcl-2, Caspase-3) enzymes were studied using qRT -PCR. Results: The IC50 of H2O2 was 0.5 mM while the effective dose of TRF 10 µg/ml. The cells which were subjected to H2O2 showed a decrease in NRCM viability and significant increase (p < 0.05) in ROS production. LDH activity and green fluorescence intensity (which indicated mitochondrial depolarisation ) were increased following H2O2 induction . With reference to the control, the H2O2- induced group had a higher percentage of late apoptotic cells, which was associated with the upregulation of the pro-apoptotic gene, Bax, and downregulation of the anti-apoptotic gene, Bcl-2 (p < 0.05). H2O2 also upregulated GPx expression , apart from downregulating CAT and Cu/Zn SOD expression (p < 0.05). The pre- and post-treatment groups had increased cell viability and reduced ROS production. Pre-treatment with TRF protected the cell membranes and mitochondria from H2O2- induced injury, as reflected by the reduction in extracellular LDH activity and apoptosis (the latter of which was associated with the downregulation of Bax). Meanwhile, the expression of GPx, Cat, and Cu/Zn SOD was reduced in the post-treatment group. Conclusion: By scavenging for ROS, palm TRF directly protects the cell membrane from H2O2- induced injury, leading to a decrease in oxidative stress. Thus, palm TRF maintains the mitochondrial membrane potential and prevents apoptosis secondary to decreased Bax expression.


2017 ◽  
Author(s):  
Noor Shareena Aisha Abdul Khalid ◽  
Zakiah Jubri

Background: Oxidative stress plays an important role in the pathogenesis of heart diseases. Antioxidants such as palm tocotrienol-rich fraction (TRF) can reduce oxidative stress, hence preventing and reducing the risk of heart disease. This study was aimed to determine the protective effects of TRF against hydrogen peroxide (H2O2 ) - induced oxidative stress in neonatal rat cardiomyocytes (NRCM). Methods: The NRCM were divided into five groups: (1) control, (2) cells treated with TRF (10 µg/ml) for 24 hours, (3) cells subjected to H2O2 (0.5 mM ) for 30 minutes, (4) cells pre-treated with TRF, and (5) cells post-treated with TRF. The IC50 of H2O2 (0 – 5 mM ) and the effective dose of TRF (0 – 25 µg/ml) were determined using the MTS cell viability assay. Meanwhile, ELISA was used to measure the level of reactive oxygen species (ROS). The presence of superoxides and H2O2 were detected by dihydroethidium and 5-(and-6 ) - carboxy -2′,7′-dichlorodihydrofluorescein diacetate respectively. Flowcytometry analysis was conducted to determine the presence of apoptosis and measure the mitochondrial membrane potential, whereby the former involved the use of Annexin V-FITC stain while the latter JC-1 stain. The gene expressions of antioxidant (SOD, CAT, GPx) and apoptosis (Bax, Bcl-2, Caspase-3) enzymes were studied using qRT -PCR. Results: The IC50 of H2O2 was 0.5 mM while the effective dose of TRF 10 µg/ml. The cells which were subjected to H2O2 showed a decrease in NRCM viability and significant increase (p < 0.05) in ROS production. LDH activity and green fluorescence intensity (which indicated mitochondrial depolarisation ) were increased following H2O2 induction . With reference to the control, the H2O2- induced group had a higher percentage of late apoptotic cells, which was associated with the upregulation of the pro-apoptotic gene, Bax, and downregulation of the anti-apoptotic gene, Bcl-2 (p < 0.05). H2O2 also upregulated GPx expression , apart from downregulating CAT and Cu/Zn SOD expression (p < 0.05). The pre- and post-treatment groups had increased cell viability and reduced ROS production. Pre-treatment with TRF protected the cell membranes and mitochondria from H2O2- induced injury, as reflected by the reduction in extracellular LDH activity and apoptosis (the latter of which was associated with the downregulation of Bax). Meanwhile, the expression of GPx, Cat, and Cu/Zn SOD was reduced in the post-treatment group. Conclusion: By scavenging for ROS, palm TRF directly protects the cell membrane from H2O2- induced injury, leading to a decrease in oxidative stress. Thus, palm TRF maintains the mitochondrial membrane potential and prevents apoptosis secondary to decreased Bax expression.


2013 ◽  
Vol 144 (5) ◽  
pp. S-10 ◽  
Author(s):  
Xuemei Liu ◽  
Taolang Li ◽  
Brigitte Riederer ◽  
Anurag K. Singh ◽  
Weiliang Xia ◽  
...  

2020 ◽  
Author(s):  
Satashree Paul ◽  

In normal conditions, the male reproductive system balances between ROS production and antioxidant activity. The seminal antioxidants play a beneficial role in restricting the ROS level in sperms


Sign in / Sign up

Export Citation Format

Share Document