scholarly journals Chalcone-Derived Nrf2 Activator Protects Cognitive Function via Maintaining Neuronal Redox Status

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1811
Author(s):  
Yuting Cui ◽  
Yue Xiong ◽  
Hua Li ◽  
Mengqi Zeng ◽  
Yan Wang ◽  
...  

NF-E2-related factor 2 (Nrf2), the key transcription regulator of phase II enzymes, has been considered beneficial for neuronal protection. We previously designed a novel chalcone analog, 1-(2,3,4-trimethoxyphenyl)-2-(3,4,5-trimethoxyphenyl)-acrylketone (Tak), that could specifically activate Nrf2 in vitro. Here, we report that Tak confers significant hippocampal neuronal protection both in vitro and in vivo. Treatment with Tak has no significant toxicity on cultured neuronal cells. Instead, Tak increases cellular ATP production by increasing mitochondrial function and decreases the levels of reactive oxygen species by activating Nrf2-mediated phase II enzyme expression. Tak pretreatment prevents glutamate-induced excitotoxic neuronal death accompanied by suppressed mitochondrial respiration, increased superoxide production, and activation of apoptosis. Further investigation indicates that the protective effect of Tak is mediated by the Akt signaling pathway. Meanwhile, Tak administration in mice can sufficiently abrogate scopolamine-induced cognitive impairment via decreasing hippocampal oxidative stress. In addition, consistent benefits are also observed in an energy stress mouse model under a high-fat diet, as the administration of Tak remarkably increases Akt signaling-mediated antioxidative enzyme expression and prevents hippocampal neuronal apoptosis without significant effect on the mouse metabolic status. Overall, our study demonstrates that Tak protects cognitive function by Akt-mediated Nrf2 activation to maintain redox status both vivo and in vitro, suggesting that Tak is a promising pharmacological candidate for the treatment of oxidative neuronal diseases.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Fangfang Tao ◽  
Yanrong Zhang ◽  
Zhiqian Zhang

Mitochondria are highly dynamic double-membrane organelles which play a well-recognized role in ATP production, calcium homeostasis, oxidation-reduction (redox) status, apoptotic cell death, and inflammation. Dysfunction of mitochondria has long been observed in a number of human diseases, including cancer. Targeting mitochondria metabolism in tumors as a cancer therapeutic strategy has attracted much attention for researchers in recent years due to the essential role of mitochondria in cancer cell growth, apoptosis, and progression. On the other hand, a series of studies have indicated that traditional medicinal herbs, including traditional Chinese medicines (TCM), exert their potential anticancer effects as an effective adjunct treatment for alleviating the systemic side effects of conventional cancer therapies, for reducing the risk of recurrence and cancer mortality and for improving the quality of patients’ life. An amazing feature of these structurally diverse bioactive components is that majority of them target mitochondria to provoke cancer cell-specific death program. The aim of this review is to summarize the in vitro and in vivo studies about the role of these herbs, especially their bioactive compounds in the modulation of the disturbed mitochondrial function for cancer therapy.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yi Yang ◽  
Wang Li ◽  
Yan Li ◽  
Qing Wang ◽  
Ling Gao ◽  
...  

Lycium barbarum polysaccharide (LBP), an antioxidant from wolfberry, displays the antioxidative and anti-inflammatory effects on experimental models of insulin resistance in vivo. However, the effective mechanism of LBP on high-fat diet-induced insulin resistance is still unknown. The objective of the study was to investigate the mechanism involved in LBP-mediated phosphatidylinositol 3-kinase (PI3K)/AKT/Nrf2 axis against high-fat-induced insulin resistance. HepG2 cells were incubated with LBP for 12 hrs in the presence of palmitate. C57BL/6J mice were fed a high-fat diet supplemented with LBP for 24 weeks. We analyzed the expression of nuclear factor-E2-related factor 2 (Nrf2), Jun N-terminal kinases (JNK), and glycogen synthase kinase 3β (GSK3β) involved in insulin signaling pathway in vivo and in vitro. First, LBP significantly induced phosphorylation of Nrf2 through PI3K/AKT signaling. Second, LBP obviously increased detoxification and antioxidant enzymes expression and reduced reactive oxygen species (ROS) levels via PI3K/AKT/Nrf2 axis. Third, LBP also regulated phosphorylation levels of GSK3β and JNK through PI3K/AKT signaling. Finally, LBP significantly reversed glycolytic and gluconeogenic genes expression via the activation of Nrf2-mediated cytoprotective effects. In summary, LBP is novel antioxidant against insulin resistance induced by high-fat diet via activation of PI3K/AKT/Nrf2 pathway.


2021 ◽  
Vol 22 (8) ◽  
pp. 3995
Author(s):  
Cheong-Yong Yun ◽  
Nahyun Choi ◽  
Jae Un Lee ◽  
Eun Jung Lee ◽  
Ji Young Kim ◽  
...  

Nuclear factor erythroid 2-related factor 2 (Nrf2), which is linked to autophagy regulation and melanogenesis regulation, is activated by marliolide. In this study, we investigated the effect of a marliolide derivative on melanosome degradation through the autophagy pathway. The effect of the marliolide derivative on melanosome degradation was investigated in α-melanocyte stimulating hormone (α-MSH)-treated melanocytes, melanosome-incorporated keratinocyte, and ultraviolet (UV)B-exposed HRM-2 mice (melanin-possessing hairless mice). The marliolide derivative, 5-methyl-3-tetradecylidene-dihydro-furan-2-one (DMF02), decreased melanin pigmentation by melanosome degradation in α-MSH-treated melanocytes and melanosome-incorporated keratinocytes, evidenced by premelanosome protein (PMEL) expression, but did not affect melanogenesis-associated proteins. The UVB-induced hyperpigmentation in HRM-2 mice was also reduced by a topical application of DMF02. DMF02 activated Nrf2 and induced autophagy in vivo, evidenced by decreased PMEL in microtubule-associated proteins 1A/1B light chain 3B (LC3)-II-expressed areas. DMF02 also induced melanosome degradation via autophagy in vitro, and DMF02-induced melanosome degradation was recovered by chloroquine (CQ), which is a lysosomal inhibitor. In addition, Nrf2 silencing by siRNA attenuated the DMF02-induced melanosome degradation via the suppression of p62. DMF02 induced melanosome degradation in melanocytes and keratinocytes by regulating autophagy via Nrf2-p62 activation. Therefore, Nrf2 activator could be a promising therapeutic agent for reducing hyperpigmentation.


2004 ◽  
Vol 95 (7) ◽  
pp. 692-699 ◽  
Author(s):  
Richard D. Patten ◽  
Isaac Pourati ◽  
Mark J. Aronovitz ◽  
Jason Baur ◽  
Flore Celestin ◽  
...  

2021 ◽  
Author(s):  
Ding-Chao Zhu ◽  
Yi-Han Wang ◽  
Jia-Hao Lin ◽  
Zhi-Min Miao ◽  
Jia-Jing Xu ◽  
...  

Osteoarthritis (OA) is a common degenerative joint disease characterized by articular cartilage degeneration and inflammation. Currently, there is hardly any effective treatment for OA due to its complicated pathology and...


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Michael L. Kamradt ◽  
Ji-Ung Jung ◽  
Kathryn M. Pflug ◽  
Dong W. Lee ◽  
Victor Fanniel ◽  
...  

AbstractCancers, including glioblastoma multiforme (GBM), undergo coordinated reprogramming of metabolic pathways that control glycolysis and oxidative phosphorylation (OXPHOS) to promote tumor growth in diverse tumor microenvironments. Adaptation to limited nutrient availability in the microenvironment is associated with remodeling of mitochondrial morphology and bioenergetic capacity. We recently demonstrated that NF-κB-inducing kinase (NIK) regulates mitochondrial morphology to promote GBM cell invasion. Here, we show that NIK is recruited to the outer membrane of dividing mitochondria with the master fission regulator, Dynamin-related protein1 (DRP1). Moreover, glucose deprivation-mediated metabolic shift to OXPHOS increases fission and mitochondrial localization of both NIK and DRP1. NIK deficiency results in decreased mitochondrial respiration, ATP production, and spare respiratory capacity (SRC), a critical measure of mitochondrial fitness. Although IκB kinase α and β (IKKα/β) and NIK are required for OXPHOS in high glucose media, only NIK is required to increase SRC under glucose deprivation. Consistent with an IKK-independent role for NIK in regulating metabolism, we show that NIK phosphorylates DRP1-S616 in vitro and in vivo. Notably, a constitutively active DRP1-S616E mutant rescues oxidative metabolism, invasiveness, and tumorigenic potential in NIK−/− cells without inducing IKK. Thus, we establish that NIK is critical for bioenergetic stress responses to promote GBM cell pathogenesis independently of IKK. Our data suggest that targeting NIK may be used to exploit metabolic vulnerabilities and improve therapeutic strategies for GBM.


1996 ◽  
Vol 30 (5) ◽  
pp. 469-472
Author(s):  
Tsong-Mei Tsai ◽  
Brian F Shea ◽  
Paul F Souney ◽  
Fred G Volinsky ◽  
Joseph M Scavone ◽  
...  

OBJECTIVE: TO study the effects of ofloxacin on the reliability of urine glucose testing. DESIGN: Open-label, nonrandomized. SETTING: A university-affiliated tertiary care hospital, ambulatory clinic. PARTICIPANTS: Ten healthy volunteers (8 men and 2 women) aged 22-39 years. MAIN OUTCOME MEASURES: Phase I (in vitro) involved the addition of selected amounts of ofloxacin to a set of standard 50-mL urine samples prepared to simulate glycosuria. Phase II (in vivo) involved the oral administration of ofloxacin 400 mg to 10 subjects. Urine was collected: (1) immediately predose, (2) pooled 0–4 hours postdose, and (3) pooled 4–8 hours postdose. Known glucose concentrations were then added to these samples. Clinitest and Diastix tests were performed on all samples. The accuracy of these tests in determining glucose concentrations was compared among urine samples taken before and after ofloxacin dosing. RESULTS: None of the ofloxacin concentrations in phase I (0,25,50, 100, 200,400, and 800 μg/mL) influenced these testing methods at the urine glucose concentrations of 0.0%, 0.5%, 1%, and 2%. Likewise, the accuracy of these two tests was unaffected by ofloxacin administration in phase II. CONCLUSIONS: In single-dose administration, ofloxacin does not interfere with Clinitest or Diastix for determining urine glucose concentrations. Supported by a grant from the RW Johnson Pharmaceutical Research Institute. Presented in abstract form at the American College of Clinical Pharmacy 1994 Winter Practice and Research Forum, February 6–9, 1994, San Diego. CA.


1976 ◽  
Vol 230 (6) ◽  
pp. 1744-1750 ◽  
Author(s):  
TB Allison ◽  
SP Bruttig ◽  
Crass MF ◽  
RS Eliot ◽  
JC Shipp

Significant alterations in heart carbohydrate and lipid metabolism are present 48 h after intravenous injection of alloxan (60 mg/kg) in rats. It has been suggested that uncoupling of oxidative phosphorylation occurs in the alloxanized rat heart in vivo, whereas normal oxidative metabolism has been demonstrated in alloxan-diabetic rat hearts perfused in vitro under conditions of adequate oxygen delivery. We examined the hypothesis that high-energy phosphate metabolism might be adversely affected in the alloxan-diabetic rat heart in vivo. Phosphocreatine and ATP were reduced by 58 and 45%, respectively (P is less than 0.001). Also, oxygen-dissociation curves were shifted to the left by 4 mmHg, and the rate of oxygen release from blood was reduced by 21% (P is less than 0.01). Insulin administration normalized heart high-energy phosphate compounds. ATP production was accelerated in diabetic hearts perfused in vitro with a well-oxygenated buffer. These studies support the hypothesis that oxidative ATP production in the alloxan-diabetic rat heart is reduced and suggest that decreased oxygen delivery may have a regulatory role in the oxidative metabolism of the diabetic rat heart.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Chao Hu ◽  
Xiaobin Zhu ◽  
Taogen Zhang ◽  
Zhouming Deng ◽  
Yuanlong Xie ◽  
...  

Introduction. Osteosarcoma is a malignant tumor associated with high mortality rates due to the toxic side effects of current therapeutic methods. Tanshinone IIA can inhibit cell proliferation and promote apoptosis in vitro, but the exact mechanism is still unknown. The aims of this study are to explore the antiosteosarcoma effect of tanshinone IIA via Src kinase and demonstrate the mechanism of this effect. Materials and Methods. Osteosarcoma MG-63 and U2-OS cell lines were stable transfections with Src-shRNA. Then, the antiosteosarcoma effect of tanshinone IIA was tested in vitro. The protein expression levels of Src, p-Src, p-ERK1/2, and p-AKt were detected by Western blot and RT-PCR. CCK-8 assay and BrdU immunofluorescence assay were used to detect cell proliferation. Transwell assay, cell scratch assay, and flow cytometry were used to detect cell invasion, migration, and cell cycle. Tumor-bearing nude mice with osteosarcoma were constructed. The effect of tanshinone IIA was detected by tumor HE staining, tumor inhibition rate, incidence of lung metastasis, and X-ray. Results. The oncogene role of Src kinase in osteosarcoma is reflected in promoting cell proliferation, invasion, and migration and in inhibiting apoptosis. However, Src has different effects on cell proliferation, apoptosis, and cell cycle regulation among cell lines. At a cellular level, the antiosteosarcoma effect of tanshinone IIA is mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. At the animal level, tanshinone IIA played a role in resisting osteosarcoma formation by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. Conclusion. Tanshinone IIA plays an antiosteosarcoma role in vitro and in vivo and inhibits the progression of osteosarcoma mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document