scholarly journals Red Wine Oxidation Characterization by Accelerated Ageing Tests and Cyclic Voltammetry

Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1943
Author(s):  
Stacy Deshaies ◽  
Luca Garcia ◽  
Frédéric Veran ◽  
Laetitia Mouls ◽  
Cédric Saucier ◽  
...  

In order to obtain information on the oxidative behavior of red wines, oxygen consumption rates and electrochemical changes (cyclic voltammetry) were measured for nine red wines subject to three different accelerated ageing tests: chemical (with hydrogen peroxide), enzymatic (with laccase from Trametes versicolor), and temperature (at 60 °C). Oxidative behavior depended both on the wine sample and accelerated ageing test type. A good correlation was observed between electrochemical parameters of charges for reference/non-oxidized wines, in accordance with their antioxidant capacity, and the variation of charges after enzymatic and temperature tests, meaning that cyclic voltammetry could be used in order to predict these two oxidation tests and reflect the wine sensitivity towards respective oxidation targets. However, it was not possible to predict wine chemical oxidation test based on hydrogen peroxide from the electrochemical measurements.

Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 663
Author(s):  
Stacy Deshaies ◽  
Guillaume Cazals ◽  
Christine Enjalbal ◽  
Thibaut Constantin ◽  
François Garcia ◽  
...  

Wine oxidation and ageing involve many complex chemical pathways and reaction mechanisms. The purpose of this study is to set up new and reproducible accelerated red wine ageing tests and identify chemical oxidation or ageing molecular markers. Three accelerated and reproducible ageing tests were developed: a heat test (60 °C); an enzymatic test (laccase test; a chemical test (hydrogen peroxide test). Depending on the test, oxygen consumption was significantly different. For a young wine (2018), the oxygen consumption rate moved from 2.40 ppm·h−1 for the heat test to 3.33 ppm·h−1 for the enzymatic test and 2.86 ppm·h−1 for the chemical test. Once applied to two other vintages (2010 and 2014) from the same winery, the tests revealed different comportments corresponding to wine natural evolution. High resolution UPLC-MS was performed on forced ageing samples and compared to naturally aged red wines. Specific oxidation or ageing ion markers were found with significant differences between tests, revealing the specificity of each test and different possible molecular pathways involved. The hydrogen peroxide test seems to be closer to natural oxidation with an important decrease in absorbance at 520 nm and similar molecular ion variations for [M+H]+ = 291, 331, 347, 493, 535, 581, 639 Da.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 815
Author(s):  
Francesca Coppola ◽  
Luigi Picariello ◽  
Martino Forino ◽  
Luigi Moio ◽  
Angelita Gambuti

Background: Three accelerated oxidation tests were proposed to simulate red wine oxidation thus providing information useful to correctly manage moderate oxygen exposure of wine during aging in regard to phenolic composition and wine color. Since the results of the tests have never been compared on wines with different initial composition, the aim of this study was to find a suitable method to simulate oxidation of any still red wine. Methods: Aglianico, Barbera, Gaglioppo, Magliocco, and Nerello wines were treated with (1) three cycles of air saturation, (2) the addition of hydrogen peroxide, and (3) the addition of acetaldehyde. Changes in chromatic characteristics and phenolic composition were determined by spectrophotometric and HPLC methods. Results: Important differences in the behavior of the different wines were detected: the highest formation of polymeric pigments was observed in Barbera and Aglianico wines. In contrast, Gaglioppo and Magliocco wines showed a lower variability before and after the oxidation probably due to the lower anthocyanin/tannin ratio. Among the accelerated oxidation tests applied, no significant differences in color parameters and phenolic composition were detected in samples treated with the addition of H2O2 and the air saturation method. Conclusion: The study demonstrated that H2O2 addition is a successful tool to predict the evolution of different phenolic compounds during the air saturation treatment of wines.


2010 ◽  
Vol 9 (3) ◽  
pp. 351-360 ◽  
Author(s):  
Abdelnaser Omran ◽  
Hamidi Abdul Aziz ◽  
Marniyanti Mamat Noor

1994 ◽  
Vol 30 (3) ◽  
pp. 73-78 ◽  
Author(s):  
O. Tünay ◽  
S. Erden ◽  
D. Orhon ◽  
I. Kabdasli

This study evaluates the characterization and treatability of 2,4-D production wastewaters. Wastewaters contain 20000-40000 mg/l COD, 17000-30000 mg/l chloride and pH is around 1.0. Chemical oxidation with hydrogen peroxide provided almost complete COD removal. The optimum conditions are 3:1 H2O2/COD oxidant dosage, 3000 mg/l Fe3+ as catalyst and pH 3. Partial oxidation at 0.5:1 H2O2//COD ratio is also effective providing 67% COD removal. A batch activated sludge system is used for biological treatability. Dilution is needed to maintain a tolerable chloride concentration which increases through COD removal. pH also increased during COD removal. 85% COD removal is obtained for the 50% dilution at an organic loading of 0.3 day‒1 on a COD basis. Completely and partially oxidized wastewaters are also treated in the activated sludge down to 30 mg/l BOD5.


2020 ◽  
Vol 02 ◽  
Author(s):  
RM Garcia ◽  
WF Vieira-Junior ◽  
JD Theobaldo ◽  
NIP Pini ◽  
GM Ambrosano ◽  
...  

Objective: To evaluate color and roughness of bovine enamel exposed to dentifrices, dental bleaching with 35% hydrogen peroxide (HP), and erosion/staining by red wine. Methods: Bovine enamel blocks were exposed to: artificial saliva (control), Oral-B Pro-Health (stannous fluoride with sodium fluoride, SF), Sensodyne Repair & Protect (bioactive glass, BG), Colgate Pro-Relief (arginine and calcium carbonate, AR), or Chitodent (chitosan, CHI). After toothpaste exposure, half (n=12) of the samples were bleached (35% HP), and the other half were not (n=12). The color (CIE L*a* b*, ΔE), surface roughness (Ra), and scanning electron microscopy were evaluated. Color and roughness were assessed at baseline, post-dentifrice and/or -dental bleaching, and after red wine. The data were subjected to analysis of variance (ANOVA) (ΔE) for repeated measures (Ra), followed by Tukey ́s test. The L*, a*, and b* values were analyzed by generalized linear models (a=0.05). Results: The HP promoted an increase in Ra values; however, the SF, BG, and AR did not enable this alteration. After red wine, all groups apart from SF (unbleached) showed increases in Ra values; SF and AR promoted decreases in L* values; AR demonstrated higher ΔE values, differing from the control; and CHI decreased the L* variation in the unbleached group. Conclusion: Dentifrices did not interfere with bleaching efficacy of 35% HP. However, dentifrices acted as a preventive agent against surface alteration from dental bleaching (BG, SF, and AR) or red wine (SF). Dentifrices can decrease (CHI) or increase (AR and SF) staining by red wine.


2009 ◽  
Vol 610-613 ◽  
pp. 161-164
Author(s):  
Li Li Liang ◽  
Xue Gang Luo ◽  
Xiao Yan Lin

A ferric stearate electrode was made by doctor-blade methods using the Fluorine tin oxide (FTO) conductive glass. The electrochemical behavior of ferric stearate electrode was studied by the cyclic voltammetry. The electro-catalytic effects of ferric stearate on H2O2 were also investigated by cyclic voltammetry.


2021 ◽  
Vol 17 ◽  
Author(s):  
Ke Huan ◽  
Li Tang ◽  
Dongmei Deng ◽  
Huan Wang ◽  
Xiaojing Si ◽  
...  

Background: Hydrogen peroxide (H2O2) is a common reagent in the production and living, but excessive H2O2 may enhance the danger to the human body. Consequently, it is very important to develop economical, fast and accurate techniques for detecting H2O2. Methods: A simple two-step electrodeposition process was applied to synthesize Pd-Cu/Cu2O nanocomposite for non-enzymatic H2O2 sensor. Cu/Cu2O nanomaterial was firstly electrodeposited on FTO by potential oscillation technique, and then Pd nanoparticles were electrodeposited on Cu/Cu2O nanomaterial by cyclic voltammetry. The chemical structure, component, and morphology of the synthesized Pd-Cu/Cu2O nanocomposite were characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The electrochemical properties of Pd-Cu/Cu2O nanocomposite were studied by cyclic voltammetry and amperometry. Results: Under optimal conditions, the as-fabricated sensor displayed a broad linear range (5-4000 µM) and low detection limit (1.8 µM) for the determination of H2O2. The proposed sensor showed good selectivity and reproducibility. Meanwhile, the proposed sensor has been successfully applied to detect H2O2 in milk. Conclusion: The Pd-Cu/Cu2O/FTO biosensor exhibits excellent electrochemical activity for H2O2 reduction, which has great potential application in the field of food safety.


Author(s):  
Paula Cajal-Mariñosa ◽  
Ruth G. de la Calle ◽  
F. Javier Rivas ◽  
Tuula Tuhkanen

AbstractThe removal efficiency of two different types of peroxide addition, catalyzed hydrogen peroxide (CHP) and sodium percarbonate (SPC) were compared on a highly PAH-contaminated soil from a wood impregnation site. In an attempt to simulate real in situ reagents delivery, experiments have been carried out in acrylic columns. The main parameters affecting contaminant removal were the reagent’s temperature and the total addition of peroxide (g


Author(s):  
Mariana Atena Poiană ◽  
I. Gergen ◽  
Diana Moigrădean ◽  
Viorica Târu ◽  
Diana Dogaru

In this paper it was obtained the apple vinegar with addition of red wines concentrates in different percents for to improve the antioxidant properties. For processing of red wine concentrates it was used the young red wines Merlot and Cabernet Sauvignon. For resulted vinegar types were analyzed total acidity, extract, total antioxidant capacity (using FRAP method), total polyphenols amount (by Folin-Ciocalteu method) and monomeric anthocyanins (using pH-differential method). Polyphenols content from vinegar with Cabernet Sauvignon concentrates addition was situated in the range 0.74-3.42 mM gallic acid/L and for vinegar with red wine Merlot concentrates addition between 0.74-2.64 mM gallic acid/L. The antioxidant capacity was presented the values between 0.45-8.18 mM Fe2+/L for apple vinegar with Cabernet Sauvignon concentrates addition and between 0.45-6.69 mM Fe2+/L for vinegar with Merlot concentrate addition. The polyphenols content and monomeric anthocyanins content of apple vinegars with red wine concentrates increase in rapport with the percent of red wines concentrates added. The values of polyphenols content and total antioxidant capacity were more with approximate 20% in the case of vinegar with Cabernet Sauvignon concentrates addition comparatively with the case of vinegar with Merlot concentrates addition.


Sign in / Sign up

Export Citation Format

Share Document