scholarly journals Oil Content, Fatty Acid Composition and Distributions of Vitamin-E-Active Compounds of Some Fruit Seed Oils

Antioxidants ◽  
2015 ◽  
Vol 4 (1) ◽  
pp. 124-133 ◽  
Author(s):  
Bertrand Matthäus ◽  
Mehmet Musazcan Özcan
2016 ◽  
Vol 71 (3-4) ◽  
pp. 73-77 ◽  
Author(s):  
Bertrand Matthaus ◽  
Mehmet Musa Özcan ◽  
Fahad Al Juhaimi

Abstract Seed samples of some rape and canola cultivars were analysed for oil content, fatty acid and tocopherol profiles. Gas liquid chromotography and high performance liquid chromotography were used for fatty acid and tocopherol analysis, respectively. The oil contents of rape and canola seeds varied between 30.6% and 48.3% of the dry weight (p<0.05). The oil contents of rapeseeds were found to be high compared with canola seed oils. The main fatty acids in the oils are oleic (56.80–64.92%), linoleic (17.11–20.92%) and palmitic (4.18–5.01%) acids. A few types of tocopherols were found in rape and canola oils in various amounts: α-tocopherol, γ-tocopherol, δ-tocopherol, β-tocopherol and α-tocotrienol. The major tocopherol in the seed oils of rape and canola cultivars were α-tocopherol (13.22–40.01%) and γ-tocopherol (33.64–51.53%) accompanied by α-T3 (0.0–1.34%) and δ-tocopherol (0.25–1.86%) (p<0.05). As a result, the present study shows that oil, fatty acid and tocopherol contents differ significantly among the cultivars.


2008 ◽  
Vol 37 (7) ◽  
pp. 953-956 ◽  
Author(s):  
Min-Jung Wie ◽  
Ji-Hae Seong ◽  
Keon-Wook Jeon ◽  
Heon-Sang Jung ◽  
Jun-Soo Lee

Author(s):  
S. К. Temirbekova ◽  
Yu. V. Afanaseva ◽  
I. M. Kulikov ◽  
G. V. Metlina ◽  
S. A. Vasilchenko

The results of long-term studies of the biological, morphological and phenological features of the introduced new culture of safflower in the Central, Volga and North Caucasus regions are presented. Optimum parameters of depth of seeding (5-6 cm), seeding rates (300-350 thousand pieces/hectare or 12-14 kg), ensuring high productivity, oil content and quality of seeds are established. For the first time, the relationship between moisture availability of vegetation periods with accumulation of oil content and a change in the fatty acid composition was established. Oilseed (in untreated seeds) in the regions was from 14,5 to 31,2%, in excessively wet 2013 – 6,4% in the Moscow region and 8,6% in the Saratov region. Fatty acid composition revealed a high content of oleic acid in Krasa Stupinskaya variety – 13,6-16,8%, linoleic acid – 68,5-75,7%. The yield of oil in the Moscow region was 240 kg/ha. The yield of Krasa Stupinskaya in the Moscow Region was 0,6 t/ha, the Rostov Region 0,8 t/ha and Saratov Region 1,2 t/ha, with an average weight of 1000 seeds, respectively, by regions: 40,0 g, 47,3 g and 40,9 g. The growing season for growing seeds was 105 days in the Moscow Region, 94 days in the Rostov Region and 95 days in the Saratov Region. It has been established that excessive moistening during the flowering and seed filling period increases the harmfulness of enzyme-mycosis seed depletion (EMIS) – biological injury during maturation (enzymatic stage), followed by the seeding of the seeds with the phytopathogen Alternaria carthami Chowdhury. In the breeding programs for productivity and oil content, it is recommended to use the varieties Moldir (Kazakhstan) and Krasa Stupinskaya (FGBNU VSTISP), the fatty acid composition of which is characterized by an increased content of oleic and linoleic acid, which is of particular value for storage and use for food purposes.


2020 ◽  
Vol 104 (5) ◽  
pp. 1410-1422
Author(s):  
Shan Tang ◽  
Dong‐Xu Liu ◽  
Shaoping Lu ◽  
Liangqian Yu ◽  
Yuqing Li ◽  
...  

2000 ◽  
Vol 53 (5) ◽  
pp. 1025-1039 ◽  
Author(s):  
P.F. Surai ◽  
J-P. Brillard ◽  
B.K. Speake ◽  
E. Blesbois ◽  
F. Seigneurin ◽  
...  

1996 ◽  
Vol 1996 ◽  
pp. 30-30
Author(s):  
C.O. Leskanich ◽  
K.R. Matthews ◽  
C.C. Warkup ◽  
R.C. Noble

The tissues of animals for food use have come to be associated with a predominance of saturated and monounsaturated fatty acids, the result of which has been to contribute to the perceived human dietary imbalance of fatty acids. The fact that porcine tissues assume a fatty acid composition similar to that of the respective diet has enabled the composition to be altered with respect to human dietary needs (Morgan et al, 1992). The fatty acid compositions of rapeseed and fish oils are characterised by a number of factors of relevance to human health recommendations (BNF, 1992). Thus, rapeseed oil contains a low content of saturates, a moderate content of linoleic acid and a high content of α-linolenic acid whilst fish oil contains high levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Although benefiting the nutritional value of meat/fat, the feeding of increased levels of highly polyunsaturated fatty acids has the potential, in theory at least, of adversely affecting organoleptic and various physical properties. Such adverse effects could be manifested during and/or after the preparation and cooking of the meat or meat products at which times the oxidative degradation of fatty acids is maximised. The inclusion of dietary vitamin E has a range of beneficial effects on meat quality principally due to its antioxidant effects. The present experiment was an attempt to optimise the fatty acid composition of pork and pork products for human health purposes whilst not adversely affecting factors controlling consumer acceptability.


2019 ◽  
Vol 170 ◽  
pp. 97-101 ◽  
Author(s):  
Angela Gabriella D’Alessandro ◽  
Giuseppe Maiorano ◽  
Donato Casamassima ◽  
Giovanni Martemucci

Sign in / Sign up

Export Citation Format

Share Document