scholarly journals Xenopus gpx3 Mediates Posterior Development by Regulating Cell Death during Embryogenesis

Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1265
Author(s):  
Hongchan Lee ◽  
Tayaba Ismail ◽  
Youni Kim ◽  
Shinhyeok Chae ◽  
Hong-Yeoul Ryu ◽  
...  

Glutathione peroxidase 3 (GPx3) belongs to the glutathione peroxidase family of selenoproteins and is a key antioxidant enzyme in multicellular organisms against oxidative damage. Downregulation of GPx3 affects tumor progression and metastasis and is associated with liver and heart disease. However, the physiological significance of GPx3 in vertebrate embryonic development remains poorly understood. The current study aimed to investigate the functional roles of gpx3 during embryogenesis. To this end, we determined gpx3’s spatiotemporal expression using Xenopus laevis as a model organism. Using reverse transcription polymerase chain reaction (RT-PCR), we demonstrated the zygotic nature of this gene. Interestingly, the expression of gpx3 enhanced during the tailbud stage of development, and whole mount in situ hybridization (WISH) analysis revealed gpx3 localization in prospective tail region of developing embryo. gpx3 knockdown using antisense morpholino oligonucleotides (MOs) resulted in short post-anal tails, and these malformed tails were significantly rescued by glutathione peroxidase mimic ebselen. The gene expression analysis indicated that gpx3 knockdown significantly altered the expression of genes associated with Wnt, Notch, and bone morphogenetic protein (BMP) signaling pathways involved in tailbud development. Moreover, RNA sequencing identified that gpx3 plays a role in regulation of cell death in the developing embryo. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and phospho-histone 3 (PH3) staining confirmed the association of gpx3 knockdown with increased cell death and decreased cell proliferation in tail region of developing embryos, establishing the involvement of gpx3 in tailbud development by regulating the cell death. Furthermore, these findings are inter-related with increased reactive oxygen species (ROS) levels in gpx3 knockdown embryos, as measured by using a redox-sensitive fluorescent probe HyPer. Taken together, our results suggest that gpx3 plays a critical role in posterior embryonic development by regulating cell death and proliferation during vertebrate embryogenesis.

2015 ◽  
Vol 31 (3) ◽  
pp. 216-221 ◽  
Author(s):  
Hu Li ◽  
Wei Han ◽  
Lei Wang ◽  
Haibo Chu ◽  
Yongbo Xu ◽  
...  

Introduction Programmed cell death plays a critical role in various physiological processes. In the present study, we investigated its possible pathogenic role in primary varicose veins. We studied histological changes in surgical specimens from thrombophlebitic saphenous veins. In thrombophlebitic saphenous, varicose, and healthy veins, we also determined the number of apoptotic cells, and investigated apoptosis in the role of the pathogenesis of varicose veins. Methods Forty-four specimens of thrombophlebitic saphenous veins and simple varicose veins were collected. Thirteen samples of normal great saphenous veins were also collected (control group). Apoptosis of venous walls was determined by terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) and immunofluorescence methods. The corpuscular number per high-power field was counted under light microscopy. Results A significantly higher apoptotic ratio of the intima and media were observed in control veins as compared with thrombophlebitic saphenous veins and simple varicose veins ( p < 0.01). A significant difference was not observed between thrombophlebitic saphenous veins and simple varicose veins ( p > 0.05). A significant difference was not seen between the intima and media of the three groups ( p > 0.05). Conclusion In the walls of thrombophlebitic saphenous veins and varicose veins, the apoptotic indices were clearly decreased. The results suggest that the process of programmed cell death was inhibited in walls of thrombophlebitic saphenous veins and varicose veins.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 328
Author(s):  
Tuy An Trinh ◽  
Young Hye Seo ◽  
Sungyoul Choi ◽  
Jun Lee ◽  
Ki Sung Kang

Oxidative stress is one of the main causes of brain cell death in neurological disorders. The use of natural antioxidants to maintain redox homeostasis contributes to alleviating neurodegeneration. Glutamate is an excitatory neurotransmitter that plays a critical role in many brain functions. However, excessive glutamate release induces excitotoxicity and oxidative stress, leading to programmed cell death. Our study aimed to evaluate the effect of osmundacetone (OAC), isolated from Elsholtzia ciliata (Thunb.) Hylander, against glutamate-induced oxidative toxicity in HT22 hippocampal cells. The effect of OAC treatment on excess reactive oxygen species (ROS), intracellular calcium levels, chromatin condensation, apoptosis, and the expression level of oxidative stress-related proteins was evaluated. OAC showed a neuroprotective effect against glutamate toxicity at a concentration of 2 μM. By diminishing the accumulation of ROS, as well as stimulating the expression of heat shock protein 70 (HSP70) and heme oxygenase-1 (HO-1), OAC triggered the self-defense mechanism in neuronal cells. The anti-apoptotic effect of OAC was demonstrated through its inhibition of chromatin condensation, calcium accumulation, and reduction of apoptotic cells. OAC significantly suppressed the phosphorylation of mitogen-activated protein kinases (MAPKs), including c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 kinases. Thus, OAC could be a potential agent for supportive treatment of neurodegenerative diseases.


2021 ◽  
Vol 22 (1) ◽  
pp. 412
Author(s):  
Christopher L. Moore ◽  
Alena V. Savenka ◽  
Alexei G. Basnakian

Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay is a long-established assay used to detect cell death-associated DNA fragmentation (3’-OH DNA termini) by endonucleases. Because these enzymes are particularly active in the kidney, TUNEL is widely used to identify and quantify DNA fragmentation and cell death in cultured kidney cells and animal and human kidneys resulting from toxic or hypoxic injury. The early characterization of TUNEL as an apoptotic assay has led to numerous misinterpretations of the mechanisms of kidney cell injury. Nevertheless, TUNEL is becoming increasingly popular for kidney injury assessment because it can be used universally in cultured and tissue cells and for all mechanisms of cell death. Furthermore, it is sensitive, accurate, quantitative, easily linked to particular cells or tissue compartments, and can be combined with immunohistochemistry to allow reliable identification of cell types or likely mechanisms of cell death. Traditionally, TUNEL analysis has been limited to the presence or absence of a TUNEL signal. However, additional information on the mechanism of cell death can be obtained from the analysis of TUNEL patterns.


2021 ◽  
Vol 22 (14) ◽  
pp. 7548
Author(s):  
Artur Pinski ◽  
Alexander Betekhtin ◽  
Jolanta Kwasniewska ◽  
Lukasz Chajec ◽  
Elzbieta Wolny ◽  
...  

As cell wall proteins, the hydroxyproline-rich glycoproteins (HRGPs) take part in plant growth and various developmental processes. To fulfil their functions, HRGPs, extensins (EXTs) in particular, undergo the hydroxylation of proline by the prolyl-4-hydroxylases. The activity of these enzymes can be inhibited with 3,4-dehydro-L-proline (3,4-DHP), which enables its application to reveal the functions of the HRGPs. Thus, to study the involvement of HRGPs in the development of root hairs and roots, we treated seedlings of Brachypodium distachyon with 250 µM, 500 µM, and 750 µM of 3,4-DHP. The histological observations showed that the root epidermis cells and the cortex cells beneath them ruptured. The immunostaining experiments using the JIM20 antibody, which recognizes the EXT epitopes, demonstrated the higher abundance of this epitope in the control compared to the treated samples. The transmission electron microscopy analyses revealed morphological and ultrastructural features that are typical for the vacuolar-type of cell death. Using the TUNEL test (terminal deoxynucleotidyl transferase dUTP nick end labelling), we showed an increase in the number of nuclei with damaged DNA in the roots that had been treated with 3,4-DHP compared to the control. Finally, an analysis of two metacaspases’ gene activity revealed an increase in their expression in the treated roots. Altogether, our results show that inhibiting the prolyl-4-hydroxylases with 3,4-DHP results in a vacuolar-type of cell death in roots, thereby highlighting the important role of HRGPs in root hair development and root growth.


2004 ◽  
Vol 287 (4) ◽  
pp. H1730-H1739 ◽  
Author(s):  
Ron Zohar ◽  
Baoqian Zhu ◽  
Peter Liu ◽  
Jaro Sodek ◽  
C. A. McCulloch

Reperfusion-induced oxidative injury to the myocardium promotes activation and proliferation of cardiac fibroblasts and repair by scar formation. Osteopontin (OPN) is a proinflammatory cytokine that is upregulated after reperfusion. To determine whether OPN enhances fibroblast survival after exposure to oxidants, cardiac fibroblasts from wild-type (WT) or OPN-null (OPN−/−) mice were treated in vitro with H2O2to model reperfusion injury. Within 1 h, membrane permeability to propidium iodide (PI) was increased from 5 to 60% in OPN−/−cells but was increased to only 20% in WT cells. In contrast, after 1–8 h of treatment with H2O2, the percent of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-stained cells was more than twofold higher in WT than OPN−/−cells. Electron microscopy of WT cells treated with H2O2showed chromatin condensation, nuclear fragmentation, and cytoplasmic and nuclear shrinkage, which are consistent with apoptosis. In contrast, H2O2-treated OPN−/−cardiac fibroblasts exhibited cell and nuclear swelling and membrane disruption that are indicative of cell necrosis. Treatment of OPN−/−and WT cells with a cell-permeable caspase-3 inhibitor reduced the percentage of TUNEL staining by more than fourfold in WT cells but decreased staining in OPN−/−cells by ∼30%. Although the percentage of PI-permeable WT cells was reduced threefold, the percent of PI-permeable OPN−/−cells was not altered. Restoration of OPN expression in OPN−/−fibroblasts reduced the percentage of PI-permeable cells but not TUNEL staining after H2O2treatment. Thus H2O2-induced cell death in OPN-deficient cardiac fibroblasts is mediated by a caspase-3-independent, necrotic pathway. We suggest that the increased expression of OPN in the myocardium after reperfusion may promote fibrosis by protecting cardiac fibroblasts from cell death.


Sign in / Sign up

Export Citation Format

Share Document