scholarly journals Impact of Temperature Changes and Freeze—Thaw Cycles on the Behaviour of Asphalt Concrete Submerged in Water with Sodium Chloride

2020 ◽  
Vol 10 (4) ◽  
pp. 1241 ◽  
Author(s):  
Ángel Vega-Zamanillo ◽  
Luis Juli-Gándara ◽  
Miguel Ángel Calzada-Pérez ◽  
Evelio Teijón-López-Zuazo

One of the main applications of salt in civil engineering is its use as a de-icing agent on roads in cold areas. The purpose of this research is to find out the mechanical behaviour of an asphalt concrete when it is subjected to temperature changes and freeze–thaw cycles. These temperature interactions have been carried out for dry specimens, specimens submerged in distilled water and specimens submerged in salt water (5% of sodium chloride, NaCl). An AC16 Surf D bituminous mixture was evaluated under three types of temperature interaction: three reference series remained at a controlled temperature of 20 °C, another three series were subjected to five freeze–thaw cycles and the last three series have been subjected to one year outside in Santander (Spain). The mechanical behaviour of the mixture was determined by Indirect Tensile Strength Test (ITS), Water Sensitivity Test (ITSR) and Wheel Tracking Test, Dynamic Modulus Test and Fatigue Tests. The results of the tests show that, although the temperature changes have a negative effect on the mechanical properties, salt water protects the aggregate-binder adhesive, maintains the mechanical strength, increases the number of load cycles for any strain range and reduces the time that the mixture is in contact with frozen water.

Author(s):  
Mohammad Zarei ◽  
Ali Abdi Kordani ◽  
Zahra ghamarimajd ◽  
Mohammad khajehzadeh ◽  
Maziar Khanjari ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yushi Liu ◽  
Xiaoming Zhou ◽  
Chengbo Lv ◽  
Yingzi Yang ◽  
Tianan Liu

Fly ash (FA) has been an important ingredient for engineered cementitious composite (ECC) with excellent tensile strain capacity and multiple cracking. Unfortunately, the frost resistance of ECC with high-volume FA has always been a problem. This paper discusses the influence of silica fume (SF) and ground-granulated blast-furnace slag (GGBS) on the frost resistance of ECC with high volume of FA. Four ECC mixtures, ECC (50% FA), ECC (70% FA), ECC (30% FA + 40% SL), and ECC (65% FA + 5% SF), are evaluated by freezing-thawing cycles up to 200 cycles in tap water and sodium chloride solution. The result shows the relative dynamic elastic modulus and mass loss of ECC in sodium chloride solution by freeze-thaw cycles are larger than those in tap water by freeze-thaw cycles. Moreover, the relative dynamic elastic modulus and mass loss of ECC by freeze-thaw cycles increase with FA content increasing. However, the ECC (30% FA + 40% SL) shows a lower relative dynamic elastic modulus and mass loss, but its deflection upon four-point bending test is relatively smaller before and after freeze-thaw cycles. By contrast, the ECC (65% FA + 5% SF) exhibits a significant deflection increase with higher first cracking load, and the toughness increases sharply after freeze-thaw cycles, meaning ECC has good toughness property.


2014 ◽  
Vol 99 ◽  
pp. 38-45 ◽  
Author(s):  
Abdulrahman Aldaood ◽  
Marwen Bouasker ◽  
Muzahim Al-Mukhtar

2011 ◽  
Vol 25 (2) ◽  
pp. 1056-1064 ◽  
Author(s):  
B. Perrin ◽  
N.A. Vu ◽  
S. Multon ◽  
T. Voland ◽  
C. Ducroquetz

2014 ◽  
Vol 72 (2) ◽  
pp. 287-308 ◽  
Author(s):  
Shuangyang Li ◽  
Yuanming Lai ◽  
Wansheng Pei ◽  
Shujuan Zhang ◽  
Hua Zhong

2017 ◽  
Vol 734 ◽  
pp. 194-201 ◽  
Author(s):  
Yutaka Konishi ◽  
Takamoto Itoh ◽  
Masao Sakane ◽  
Fumio Ogawa ◽  
Hideyuki Kanayama

This paper investigates the fatigue results in low cycle fatigue region obtained from a miniaturized specimen having a 6mm gage length, 3mm diameter and 55mm total length. Fatigue tests were performed for two type lead-free solders using horizontal-type electrical servo hydraulic push-pull fatigue testing machine. Materials employed were Sn-3.0Ag-0.5Cu and Sn-5Sb. The results from Sn-3.0Ag-0.5Cu were compared with those obtained using a bulk specimen in a previous study. Relationship between strain range and number of cycles to failure of the small-sized specimen agreed with those of the bulk specimens. The testing techniques are applicable to Sn-5Sb following the Manson-Coffin law. These results confirm that the testing technique proposed here, using small-sized specimen, is suitable to get fruitful fatigue data for lead-free solder compounds.


Author(s):  
Md Mehedi Hasan ◽  
Hasan M. Faisal ◽  
Biswajit K. Bairgi ◽  
A. S. M. Rahman ◽  
Rafiqul Tarefder

Asphalt concrete’s dynamic modulus (|E*|) is one of the key input parameters for structural design of flexible pavement according to the Mechanistic Empirical Pavement Design Guide (MEPDG). Till this day, pavement industry uses |E*| to predict pavement performance whether the material is hot mix asphalt (HMA) or warm mx asphalt or Reclaimed Asphalt Pavement (RAP) mixed HMA. However, it is necessary to investigate the correlation of |E*| with laboratory performance testing. In this study, laboratory dynamic modulus test was conducted on four different asphalt concrete mixtures collected from different construction sites in the state of New Mexico and mastercurves were obtained to evaluate dynamic modulus (|E*|) for a wide range of frequency. In addition, fatigue performance of these mixtures was predicted from the mastercurves and compared with the laboratory fatigue performance testing. Fatigue performance of these mixtures was evaluated from the four point beam fatigue test. The laboratory results show a good agreement with the predicted value from mastercurves. It is also observed from this study that the fatigue life of the asphalt concrete materials decreases with increase in |E*| value.


Author(s):  
Keiji Kubushiro ◽  
Hiroki Yoshizawa ◽  
Takuya Itou ◽  
Hirokatsu Nakagawa

Creep-fatigue properties of candidate materials of 700°C-USC boiler are investigated. The candidate materials are Alloy 230, Alloy 263, Alloy 617 and HR6W. Creep-fatigue tests were conducted at 700°C and the effect of both strain range and hold time were studied. Experimental results showed that at 1.0% strain range, cycles to failure with 60 min strain holding is about 10% of that without strain holding, but at 0.7% strain range, cycles to failure with 60 min strain holding decreases down to about 1% of without strain holding. It appears that cycles to failure is decreased by increasing strain holding time at all tested strain ranges, and the effect of holding time is emphasized at small strain range. These phenomena depend on the kind of alloys.


Sign in / Sign up

Export Citation Format

Share Document