scholarly journals Microalgae Water Bioremediation: Trends and Hot Topics

2020 ◽  
Vol 10 (5) ◽  
pp. 1886 ◽  
Author(s):  
Diana Pacheco ◽  
Ana Cristina Rocha ◽  
Leonel Pereira ◽  
Tiago Verdelhos

The need to reduce costs associated with the production of microalgae biomass has encouraged the coupling of process with wastewater treatment. Emerging pollutants in municipal, industrial, and agricultural wastewaters, ranging from pharmaceuticals to metals, endanger public health and natural resources. The use of microalgae has, in fact, been shown to be an efficient method in water-treatment processes and presents several advantages, such as carbon sequestration, and an opportunity to develop innovative bioproducts with applications to several industries. Using a bibliometric analysis software, SciMAT, a mapping of the research field was performed, analyzing the articles produced between 1981 and 2018, aiming to identifying the hot topics and trends studied until now. The application of microalgae on water bioremediation is an evolving research field that currently focuses on developing efficient and cost-effective treatments methods that also enable the production of add-value products, leading to a blue and circular economy.

2020 ◽  
Author(s):  
José Gustavo Ronderos-Lara ◽  
Hugo Saldarriaga-Noreña ◽  
Pedro Guillermo Reyes-Romero ◽  
Luis Alberto Chávez-Almazán ◽  
Josefina Vergara-Sánchez ◽  
...  

In recent years, the presence of organic pollutants has received great attention due to their effects on public health and biota. Within this set of compounds, a new range of compounds that are characterized by their high persistence and low degradation have been identified, called Emerging Compounds. Emerging pollutants include a wide variety of products for daily use of different structures, domestic and industrial applications, such as: pesticides, industrial and personal hygiene products, hormones, and drugs, most of which are toxic, persistent and bioaccumulative. A characteristic of these types of pollutants is that current wastewater treatment plants are unable to remove them; they are designed to remove organic matter and nutrients in higher concentrations. In Mexico there is little information on the concentration levels of these compounds, due to the lack of public policies aimed at providing resources to institutions and researchers trained to carry out this type of study. On the other hand, the technological infrastructure of the wastewater treatment plants is insufficient for the country’s demand. This situation represents one of the greatest challenges for the authorities responsible for the management of water resources, in the immediate time if it is intended to preserve said resource and therefore take care of the health of the population.


2019 ◽  
Vol 31 (5) ◽  
pp. 1013-1016
Author(s):  
J.B. Veeramalini ◽  
B. Bharathiraja ◽  
S. Raghu Vinayak ◽  
R. Vignesh ◽  
S.K. Raghul

In present work, water treatment processes is carried out by an affordable, readily usable and non-chemical method. This study involved the process of water may reduce the concentration of particulate matter that includes suspended particles, micro organisms, a range of dissolved and particulate material derived from the surfaces. The substances used in this work were coarsely blended with each other and a special composite fibre filter was made. Several processes variables of quality of waste are also measured before and after the treatment. Results show that the water quality has been enriched in several ways such as reduction in the dissolved solids, pH has been controlled, deodorization and prevention of microbial growth. Hence use of this work has been utilized as a “Homemaker Model” and act as an alternative method for wastewater treatment in a cost effective way.


2011 ◽  
Vol 6 (4) ◽  
Author(s):  
D. Reinhold ◽  
N. Aryal

Low cost, sustainable technologies for addressing pollution of waters with trace concentrations of pharmaceuticals and personal care products (PPCPs) are needed. Plant-based ecosystems for wastewater treatment are low-cost, effective technologies with the potential to address PPCPs. This abstract presents recent research examining the phytoremediation of PPCPs in both aquatic and terrestrial systems and discusses potential implications of phytoremediation of PPCPs. Research indicates that duckweed plants can stimulate microbial degradation of ibuprofen, sorb and uptake fluoxetine, and indirectly affect the fate of triclosan. Additionally, research indicates that food crops phytoaccumulate antimicrobials present in biosolids. The implications of these processes include mitigation of ecotoxicological risk from antimicrobial contamination of surface waters and soils with minimal risk to humans from consumption of phytoaccumulated antimicrobials. Additionally, plants may serve as a long-term reservoir for PPCPs in the environment.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7687
Author(s):  
Visva Bharati Barua ◽  
Mariya Munir

Microalgae are unicellular photosynthetic eukaryotes that can treat wastewater and provide us with biofuel. Microalgae cultivation utilizing wastewater is a promising approach for synchronous wastewater treatment and biofuel production. However, previous studies suggest that high microalgae biomass production reduces lipid production and vice versa. For cost-effective biofuel production from microalgae, synchronous lipid and biomass enhancement utilizing wastewater is necessary. Therefore, this study brings forth a comprehensive review of synchronous microalgal lipid and biomass enhancement strategies for biofuel production and wastewater treatment. The review emphasizes the appropriate synergy of the microalgae species, culture media, and synchronous lipid and biomass enhancement conditions as a sustainable, efficient solution.


2014 ◽  
Vol 16 (2) ◽  
pp. 271-279 ◽  
Author(s):  
Junchen Yang ◽  
Kun Wang ◽  
Qingliang Zhao ◽  
Likun Huang ◽  
Chung-Shin Yuan ◽  
...  

Author(s):  
Deepika Rajwar ◽  
Mamta Bisht ◽  
J. P. N. Rai

In recent years, stringent discharge standards prior to the release of effluent into the water bodies have led to implementation of diverse advanced biological treatment processes in various industries. Biological treatment is a fundamental part of industrial wastewater treatment, contains soluble inorganic/organic pollutants. Being a cost-effective process, biological treatment has an economic advantage over chemical and physical processes. It employs a range of microorganisms which as a community form a microbial biofilm. Microbial biofilm provides a diverse range of micro-niches to microbial communities and protection from physical agitation to support metabolic potential and functional stability. Currently, biofilms are applied in wastewater treatment, degradation of toxic waste in water and soil and production of various commercial products. Intensive exploration has proved the importance of biofilm as a highly promising biotechnology, especially in wastewater treatment.


1998 ◽  
Vol 37 (10) ◽  
pp. 79-90 ◽  
Author(s):  
Avner Adin ◽  
Takashi Asano

Amid the heightened public health concerns for emerging microorganisms such as cryptosporidium and enteropathogenic E. coli in the water environment, there have been many instances where optimization of chemical coagulation-flocculation processes and filtration of wastewater was not achieved in practice, resulting in waste of coagulant chemicals and breach of the multiple barriers to pathogen removal and inactivation; thus, unnecessarily endangering public health. In addition, lack of information on the optimization of these processes has hampered the establishment of alternative and more cost-effective wastewater reclamation methods for tertiary and advanced wastewater treatment. Thus, the purpose of this paper is to evaluate the basic factors affecting the optimization of chemical coagulation-flocculation and filtration processes in municipal wastewater reclamation and reuse, based on the theoretical developments and practical applications. Reference is also made to the wastewater treatment processes and operations that can produce reclaimed water with an extremely small probability of enteric virus contamination.


2018 ◽  
Vol 8 (4) ◽  
pp. 777-785
Author(s):  
Mahmudur Rahman Idris ◽  
Md. Arifuzzaman ◽  
Arnob Basak ◽  
Tonmoy Saha and Jarin Yasmin

Sign in / Sign up

Export Citation Format

Share Document