scholarly journals Machine Learning Approaches for Ship Speed Prediction towards Energy Efficient Shipping

2020 ◽  
Vol 10 (7) ◽  
pp. 2325 ◽  
Author(s):  
Misganaw Abebe ◽  
Yongwoo Shin ◽  
Yoojeong Noh ◽  
Sangbong Lee ◽  
Inwon Lee

As oil prices continue to rise internationally, shipping costs are also increasing rapidly. In order to reduce fuel costs, an economical shipping route must be determined by accurately predicting the estimated arrival time of ships. A common method in the evaluation of ship speed involves computing the total resistance of a ship using theoretical analysis; however, using theoretical equations cannot be applied for most ships under various operating conditions. In this study, a machine learning approach was proposed to predict ship speed over the ground using the automatic identification system (AIS) and noon-report maritime weather data. To train and validate the developed model, the AIS and marine weather data of the seventy-six vessels for a period one year were used. The model accuracy result shows that the proposed data-driven model has a satisfactory capability to predict the ship speed based on the chosen features.


2020 ◽  
Vol 10 (17) ◽  
pp. 6010
Author(s):  
Yong Woo Shin ◽  
Misganaw Abebe ◽  
Yoojeong Noh ◽  
Sangbong Lee ◽  
Inwon Lee ◽  
...  

With soaring oil prices worldwide, determining the most optimal routes for economical ship operation has become an important issue. Optimizing ship routes is economically important for ship operation, but it is also essential to meet the standards of environmental regulations recently imposed by the International Maritime Organization. For this purpose, various algorithms for determining ship routes have been developed to ensure the economical operation of ships via utilization of marine climate data and Automatic Identification System (AIS) data. However, such algorithms require a large amount of computational time and do not provide optimal routes because they do not consider practical operating conditions, such as weather and ocean conditions. In this study, an improved A* algorithm using AIS and weather data is proposed to overcome the limitation of the original A* algorithm, one of the most widely used path-finding algorithms. The improved A* algorithm uses an adaptive grid system that efficiently explores nodes according to map grid deformation by latitude. It finds economical routes by minimizing the estimated time of arrival generated by machine learning through 16-way node exploration. For verification of the proposed method, the original A* algorithm and improved A* algorithm were compared through a case study.



2021 ◽  
Vol 157 (A3) ◽  
Author(s):  
D Handayani ◽  
W Sediono ◽  
A Shah

The paper describes the supervised method approach to identifying vessel anomaly behaviour. The vessel anomaly behaviour is determined by learning from self-reporting maritime systems based on the Automatic Identification System (AIS). The AIS is a real world vessel reporting data system, which has been recently made compulsory by the International Convention for the Safety of Life and Sea (SOLAS) for vessels over 300 gross tons and most commercial vessels such as cargo ships, passenger vessels, tankers, etc. In this paper, we describe the use of Bayesian networks (BNs) approach to identify the behaviour of the vessel of interest. The BNs is a machine learning technique based on probabilistic theory that represents a set of random variables and their conditional independencies via directed acyclic graph (DAG). Previous studies showed that the BNs have important advantages compared to other machine learning techniques. Among them are that expert knowledge can be included in the BNs model, and that humans can understand and interpret the BNs model more readily. This work proves that the BNs technique is applicable to the identification of vessel anomaly behaviour.



Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 582
Author(s):  
Holger Behrends ◽  
Dietmar Millinger ◽  
Werner Weihs-Sedivy ◽  
Anže Javornik ◽  
Gerold Roolfs ◽  
...  

Faults and unintended conditions in grid-connected photovoltaic systems often cause a change of the residual current. This article describes a novel machine learning based approach to detecting anomalies in the residual current of a photovoltaic system. It can be used to detect faults or critical states at an early stage and extends conventional threshold-based detection methods. For this study, a power-hardware-in-the-loop approach was carried out, in which typical faults have been injected under ideal and realistic operating conditions. The investigation shows that faults in a photovoltaic converter system cause a unique behaviour of the residual current and fault patterns can be detected and identified by using pattern recognition and variational autoencoder machine learning algorithms. In this context, it was found that the residual current is not only affected by malfunctions of the system, but also by volatile external influences. One of the main challenges here is to separate the regular residual currents caused by the interferences from those caused by faults. Compared to conventional methods, which respond to absolute changes in residual current, the two machine learning models detect faults that do not affect the absolute value of the residual current.



2021 ◽  
Author(s):  
El houssaine Bouras ◽  
Lionel Jarlan ◽  
Salah Er-Raki ◽  
Riad Balaghi ◽  
Abdelhakim Amazirh ◽  
...  

<p>Cereals are the main crop in Morocco. Its production exhibits a high inter-annual due to uncertain rainfall and recurrent drought periods. Considering the importance of this resource to the country's economy, it is thus important for decision makers to have reliable forecasts of the annual cereal production in order to pre-empt importation needs. In this study, we assessed the joint use of satellite-based drought indices, weather (precipitation and temperature) and climate data (pseudo-oscillation indices including NAO and the leading modes of sea surface temperature -SST- in the mid-latitude and in the tropical area) to predict cereal yields at the level of the agricultural province using machine learning algorithms (Support Vector Machine -SVM-, Random forest -FR- and eXtreme Gradient Boost -XGBoost-) in addition to Multiple Linear Regression (MLR). Also, we evaluate the models for different lead times along the growing season from January (about 5 months before harvest) to March (2 months before harvest). The results show the combination of data from the different sources outperformed the use of a single dataset; the highest accuracy being obtained when the three data sources were all considered in the model development. In addition, the results show that the models can accurately predict yields in January (5 months before harvesting) with an R² = 0.90 and RMSE about 3.4 Qt.ha<sup>-1</sup>.  When comparing the model’s performance, XGBoost represents the best one for predicting yields. Also, considering specific models for each province separately improves the statistical metrics by approximately 10-50% depending on the province with regards to one global model applied to all the provinces. The results of this study pointed out that machine learning is a promising tool for cereal yield forecasting. Also, the proposed methodology can be extended to different crops and different regions for crop yield forecasting.</p>



2021 ◽  
Author(s):  
Jona Raphael ◽  
Ben Eggleston ◽  
Ryan Covington ◽  
Tatianna Evanisko ◽  
Sasha Bylsma ◽  
...  

<p><strong>Operational oil discharges from ships</strong>, also known as “bilge dumping,” have been identified as a major source of petroleum products entering our oceans, cumulatively exceeding the largest oil spills, such as the Exxon Valdez and Deepwater Horizon spills, even when considered over short time spans. However, we still don’t have a good estimate of</p><ul><li>How much oil is being discharged;</li> <li>Where the discharge is happening;</li> <li>Who the responsible vessels are.</li> </ul><p>This makes it difficult to prevent and effectively respond to oil pollution that can damage our marine and coastal environments and economies that depend on them.</p><p> </p><p>In this presentation we will share SkyTruth’s recent work to address these gaps using machine learning tools to detect oil pollution events and identify the responsible vessels when possible. We use a convolutional neural network (CNN) in a ResNet-34 architecture to perform <strong>pixel segmentation</strong> on all incoming <strong>Sentinel-1 synthetic aperture radar</strong> (SAR) imagery to classify slicks. Despite the satellites’ incomplete oceanic coverage, we have been detecting an average of <strong>135 vessel slicks per month</strong>, and have identified several geographic hotspots where oily discharges are occurring regularly. For the images that capture a vessel in the act of discharging oil, we rely on an <strong>Automatic Identification System</strong> (AIS) database to extract details about the ships, including vessel type and flag state. We will share our experience</p><ul><li>Making sufficient training data from inherently sparse satellite image datasets;</li> <li>Building a computer vision model using PyTorch and fastai;</li> <li>Fully automating the process in the Amazon Web Services (AWS) cloud.</li> </ul><p>The application has been running continuously since August 2020, has processed over 380,000 Sentinel-1 images, and has populated a database with more than 1100 high-confidence slicks from vessels. We will be discussing <strong>preliminary results</strong> from this dataset and remaining challenges to be overcome.</p><p> </p><p>Our objective in making this information and the underlying code, models, and training data <strong>freely available to the public</strong> and governments around the world is to enable public pressure campaigns to improve the prevention of and response to pollution events. Learn more at https://skytruth.org/bilge-dumping/</p>



2014 ◽  
Vol 8 (6) ◽  
pp. 2409-2418 ◽  
Author(s):  
U. Löptien ◽  
L. Axell

Abstract. The Baltic Sea is a seasonally ice-covered marginal sea located in a densely populated area in northern Europe. Severe sea ice conditions have the potential to hinder the intense ship traffic considerably. Thus, sea ice fore- and nowcasts are regularly provided by the national weather services. Typically, the forecast comprises several ice properties that are distributed as prognostic variables, but their actual usefulness is difficult to measure, and the ship captains must determine their relative importance and relevance for optimal ship speed and safety ad hoc. The present study provides a more objective approach by comparing the ship speeds, obtained by the automatic identification system (AIS), with the respective forecasted ice conditions. We find that, despite an unavoidable random component, this information is useful to constrain and rate fore- and nowcasts. More precisely, 62–67% of ship speed variations can be explained by the forecasted ice properties when fitting a mixed-effect model. This statistical fit is based on a test region in the Bothnian Sea during the severe winter 2011 and employs 15 to 25 min averages of ship speed.



2014 ◽  
Vol 8 (4) ◽  
pp. 3811-3828
Author(s):  
U. Löptien ◽  
L. Axell

Abstract. The Baltic Sea is a seasonally ice covered marginal sea located in a densely populated area in northern Europe. Severe sea ice conditions have the potential to hinder the intense ship traffic considerably. Thus, sea ice fore- and nowcasts are regularly provided by the national weather services. Typically, several ice properties are allocated, but their actual usefulness is difficult to measure and the ship captains must determine their relative importance and relevance for optimal ship speed and safety ad hoc. The present study provides a more objective approach by comparing the ship speeds, obtained by the Automatic Identification System (AIS), with the respective forecasted ice conditions. We find that, despite an unavoidable random component, this information is useful to constrain and rate fore- and nowcasts. More precisely, 62–67% of ship speed variations can be explained by the forecasted ice properties when fitting a mixed effect model. This statistical fit is based on a test region in the Bothnian Bay during the severe winter 2011 and employes 15 to 25 min averages of ship speed.



2020 ◽  
Vol 138 ◽  
pp. 110137 ◽  
Author(s):  
Zohair Malki ◽  
El-Sayed Atlam ◽  
Aboul Ella Hassanien ◽  
Guesh Dagnew ◽  
Mostafa A. Elhosseini ◽  
...  


2021 ◽  
Author(s):  
Rajeev Ranjan Sinha ◽  
Supriya Gupta ◽  
Praprut Songchitruksa ◽  
Saniya Karnik ◽  
Amey Ambade

Abstract Electrical Submersible Pump (ESP) systems efficiently pump high volumes of production fluids from the wellbore to the surface. They are extensively used in the oil and gas industry due to their adaptability, low maintenance, safety and relatively low environmental impact. They require specific operating conditions with respect to the power, fluid level and fluid content. Oilfield operation workflows often require extensive surveillance and monitoring by subject-matter experts (SMEs). Detecting issues like formation of unwanted gas and emulsions in ESPs requires constant analysis of downhole data by SMEs. The lack of adequate and accurate monitoring of the downhole pumps can lead to low efficiency, high lifting costs, and frequent repair and replacements. There are 3 workflows described in the paper which demonstrate that the maintenance costs of the ESPs can be significantly reduced, and production optimized with the augmentation of machine learning approaches typically unused in ESP surveillance and failure analysis.



2021 ◽  
Vol 13 (7) ◽  
pp. 3851
Author(s):  
Jiří David ◽  
Pavel Švec ◽  
Vít Pasker ◽  
Romana Garzinová

This article deals with the issue of computer vision on a rolling mill. The main goal of this article is to describe the designed and implemented algorithm for the automatic identification of the character string of billets on the rolling mill. The algorithm allows the conversion of image information from the front of the billet, which enters the rolling process, into a string of characters, which is further used to control the technological process. The purpose of this identification is to prevent the input pieces from being confused because different parameters of the rolling process are set for different pieces. In solving this task, it was necessary to design the optimal technical equipment for image capture, choose the appropriate lighting, search for text and recognize individual symbols, and insert them into the control system. The research methodology is based on the empirical-quantitative principle, the basis of which is the analysis of experimentally obtained data (photographs of billet faces) in real operating conditions leading to their interpretation (transformation into the shape of a digital chain). The first part of the article briefly describes the billet identification system from the point of view of technology and hardware resources. The next parts are devoted to the main parts of the algorithm of automatic identification—optical recognition of strings and recognition of individual characters of the chain using artificial intelligence. The method of optical character recognition using artificial neural networks is the basic algorithm of the system of automatic identification of billets and eliminates ambiguities during their further processing. Successful implementation of the automatic inspection system will increase the share of operation automation and lead to ensuring automatic inspection of steel billets according to the production plan. This issue is related to the trend of digitization of individual technological processes in metallurgy and also to the social sustainability of processes, which means the elimination of human errors in the management of the billet rolling process.



Sign in / Sign up

Export Citation Format

Share Document