scholarly journals Experimental Study on the Micromorphology and Strength Formation Mechanism of Epoxy Asphalt During the Curing Reaction

2020 ◽  
Vol 10 (7) ◽  
pp. 2610
Author(s):  
Wei Xu ◽  
Guoyi Zhuang ◽  
Zhengxiong Chen ◽  
Jintao Wei

The micromorphological changes and the strength formation mechanism of the curing of epoxy asphalt, which is mostly used for steel bridge deck pavements, were investigated. A tensile test was used to analyze the mechanical properties of epoxy asphalt, and Fourier transform infrared spectroscopy (FTIR) was used to determine the change in the epoxy peak area. Laser scanning confocal microscopy (LSCM) and scanning electron microscopy (SEM) were used to observe two-dimensional and three-dimensional micromorphological changes, respectively, during the curing reaction of epoxy asphalt. The results of the tensile and FTIR tests on epoxy asphalt showed that the tensile strength and epoxy conversion rate both increased with the curing time and exhibited similar trends, indicating that the network formed by the crosslinking and polymerization of epoxy groups causes the increased strength of epoxy asphalt. The curing degree of epoxy asphalt during the curing reaction can be indirectly evaluated from the conversion rate of epoxy groups. The asphalt tended to evenly be dispersed in the continuous phase of the epoxy resin during the formation of the epoxy resin network, and the network structure increased the deformation of the epoxy resin. The epoxy asphalt curing reaction process was classified into three stages based on the degree of curing.

2013 ◽  
Vol 785-786 ◽  
pp. 295-299 ◽  
Author(s):  
Yan Jun Zhang ◽  
Dong Wei Cao ◽  
Hai Yan Zhang ◽  
Xiao Wei Wu

Epoxy asphalt has been proposed for the steel bridge deck and the heavy traffic on the road because it shows excellent heat resistance, free from bleeding, low temperature cracking resistance. In this paper, the curing characteristics of epoxy resin system and epoxy asphalt system were studied. The curing time and the viscosity of different epoxy resin and epoxy asphalt systems were tested. Experimental results indicated that: In the pure epoxy system, the curing time was decreased with the content of curing agent and accelerator increasing, and increased with the diluents addition. Epoxy asphalt was prepared after asphalt system addition; the viscosity was increased with curing time increasing and accelerator content increase. The allowable reserved time was decreased with the accelerator content increase. The growth of the system viscosity was slowly and the curing of epoxy asphalt was hindered with the more asphalt addition.


2015 ◽  
Vol 713-715 ◽  
pp. 2830-2833
Author(s):  
Fan Shen ◽  
Ming Yu Zhao ◽  
Ji Lu ◽  
Qing Jun Ding

Cement-Emulsifying Asphalt and waterborne Epoxy (CAE) cementing materials meet requirement for paving in steel bridge deck pavement materials, which possessing good flexibility, high temperature stability and cohesiveness to steel plate, and the microstructure model and structure formation mechanism of CAE mortar was researching in this paper. The results of the study show that, CAE mortar forms the asphalt and epoxy interpenetrating network structure which connect with cement, and the forming process contains four stage, which is dispersedness, interaction, structure formation and strength development. This structure makes CAE concrete give full play to such characteristic, which is good adhesion of cement with asphalt and epoxy resin, good temperature stability and high bonding strength of epoxy resin, good toughness of asphalt.


Author(s):  
W.F. Marshall ◽  
K. Oegema ◽  
J. Nunnari ◽  
A.F. Straight ◽  
D.A. Agard ◽  
...  

The ability to image cells in three dimensions has brought about a revolution in biological microscopy, enabling many questions to be asked which would be inaccessible without this capability. There are currently two major methods of three dimensional microscopy: laser-scanning confocal microscopy and widefield-deconvolution microscopy. The method of widefield-deconvolution uses a cooled CCD to acquire images from a standard widefield microscope, and then computationally removes out of focus blur. Using such a scheme, it is easy to acquire time-lapse 3D images of living cells without killing them, and to do so for multiple wavelengths (using computer-controlled filter wheels). Thus, it is now not only feasible, but routine, to perform five dimensional microscopy (three spatial dimensions, plus time, plus wavelength).Widefield-deconvolution has several advantages over confocal microscopy. The two main advantages are high speed of acquisition (because there is no scanning, a single optical section is acquired at a time by using a cooled CCD camera) and the use of low excitation light levels Excitation intensity can be much lower than in a confocal microscope for three reasons: 1) longer exposures can be taken since the entire 512x512 image plane is acquired in parallel, so that dwell time is not an issue, 2) the higher quantum efficiently of a CCD detect over those typically used in confocal microscopy (although this is expected to change due to advances in confocal detector technology), and 3) because no pinhole is used to reject light, a much larger fraction of the emitted light is collected. Thus we can typically acquire images with thousands of photons per pixel using a mercury lamp, instead of a laser, for illumination. The use of low excitation light is critical for living samples, and also reduces bleaching. The high speed of widefield microscopy is also essential for time-lapse 3D microscopy, since one must acquire images quickly enough to resolve interesting events.


Author(s):  
J. Holy ◽  
G. Schatten

One of the classic limitations of light microscopy has been the fact that three dimensional biological events could only be visualized in two dimensions. Recently, this shortcoming has been overcome by combining the technologies of laser scanning confocal microscopy (LSCM) and computer processing of microscopical data by volume rendering methods. We have employed these techniques to examine morphogenetic events characterizing early development of sea urchin embryos. Specifically, the fourth cleavage division was examined because it is at this point that the first morphological signs of cell differentiation appear, manifested in the production of macromeres and micromeres by unequally dividing vegetal blastomeres.The mitotic spindle within vegetal blastomeres undergoing unequal cleavage are highly polarized and develop specialized, flattened asters toward the micromere pole. In order to reconstruct the three-dimensional features of these spindles, both isolated spindles and intact, extracted embryos were fluorescently labeled with antibodies directed against either centrosomes or tubulin.


Author(s):  
Hakan Ancin

This paper presents methods for performing detailed quantitative automated three dimensional (3-D) analysis of cell populations in thick tissue sections while preserving the relative 3-D locations of cells. Specifically, the method disambiguates overlapping clusters of cells, and accurately measures the volume, 3-D location, and shape parameters for each cell. Finally, the entire population of cells is analyzed to detect patterns and groupings with respect to various combinations of cell properties. All of the above is accomplished with zero subjective bias.In this method, a laser-scanning confocal light microscope (LSCM) is used to collect optical sections through the entire thickness (100 - 500μm) of fluorescently-labelled tissue slices. The acquired stack of optical slices is first subjected to axial deblurring using the expectation maximization (EM) algorithm. The resulting isotropic 3-D image is segmented using a spatially-adaptive Poisson based image segmentation algorithm with region-dependent smoothing parameters. Extracting the voxels that were labelled as "foreground" into an active voxel data structure results in a large data reduction.


2021 ◽  
Vol 291 ◽  
pp. 123366
Author(s):  
Yang Liu ◽  
Zhendong Qian ◽  
Xijun Shi ◽  
Yuheng Zhang ◽  
Haisheng Ren

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 861
Author(s):  
Jacopo Cardellini ◽  
Arianna Balestri ◽  
Costanza Montis ◽  
Debora Berti

In the past decade(s), fluorescence microscopy and laser scanning confocal microscopy (LSCM) have been widely employed to investigate biological and biomimetic systems for pharmaceutical applications, to determine the localization of drugs in tissues or entire organisms or the extent of their cellular uptake (in vitro). However, the diffraction limit of light, which limits the resolution to hundreds of nanometers, has for long time restricted the extent and quality of information and insight achievable through these techniques. The advent of super-resolution microscopic techniques, recognized with the 2014 Nobel prize in Chemistry, revolutionized the field thanks to the possibility to achieve nanometric resolution, i.e., the typical scale length of chemical and biological phenomena. Since then, fluorescence microscopy-related techniques have acquired renewed interest for the scientific community, both from the perspective of instrument/techniques development and from the perspective of the advanced scientific applications. In this contribution we will review the application of these techniques to the field of drug delivery, discussing how the latest advancements of static and dynamic methodologies have tremendously expanded the experimental opportunities for the characterization of drug delivery systems and for the understanding of their behaviour in biologically relevant environments.


Author(s):  
Manoel E.L. Machado ◽  
Virginia Natalia Veintimilla Lozada ◽  
Karol Jasmin Carrillo Rengifo ◽  
Raquel E.G. Guillén ◽  
Hector Caballero‐Flores ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document