scholarly journals Review of GaN Thin Film and Nanorod Growth Using Magnetron Sputter Epitaxy

2020 ◽  
Vol 10 (9) ◽  
pp. 3050 ◽  
Author(s):  
Aditya Prabaswara ◽  
Jens Birch ◽  
Muhammad Junaid ◽  
Elena Alexandra Serban ◽  
Lars Hultman ◽  
...  

Magnetron sputter epitaxy (MSE) offers several advantages compared to alternative GaN epitaxy growth methods, including mature sputtering technology, the possibility for very large area deposition, and low-temperature growth of high-quality electronic-grade GaN. In this article, we review the basics of reactive sputtering for MSE growth of GaN using a liquid Ga target. Various target biasing schemes are discussed, including direct current (DC), radio frequency (RF), pulsed DC, and high-power impulse magnetron sputtering (HiPIMS). Examples are given for MSE-grown GaN thin films with material quality comparable to those grown using alternative methods such as molecular-beam epitaxy (MBE), metal–organic chemical vapor deposition (MOCVD), and hydride vapor phase epitaxy (HVPE). In addition, successful GaN doping and the fabrication of practical devices have been demonstrated. Beyond the planar thin film form, MSE-grown GaN nanorods have also been demonstrated through self-assembled and selective area growth (SAG) method. With better understanding in process physics and improvements in material quality, MSE is expected to become an important technology for the growth of GaN.

1997 ◽  
Vol 482 ◽  
Author(s):  
Z-Q. Fang ◽  
J. W. Hemsky ◽  
D. C. Look ◽  
M. P. Mack ◽  
R. J. Molnar ◽  
...  

AbstractA 1-MeV-electron-irradiation (EI) induced trap at Ec-0.18 eV is found in n-type GaN by deep level transient spectroscopy (DLTS) measurements on Schottky barrier diodes, fabricated on both metal-organic-chemical-vapor-deposition and hydride-vapor-phase-epitaxy material grown on sapphire. The 300-K carrier concentrations of the two materials are 2.3 × 1016 cm−3 and 1.3 × 1017 cm−3, respectively. Up to an irradiation dose of 1 × 1015 cm−2, the electron concentrations and pre-existing traps in the GaN layers are not significantly affected, while the EI-induced trap is produced at a rate of at least 0.2 cm−1. The DLTS peaks in the two materials are shifted slightly, possibly due to electric-field effects. Comparison with theory suggests that the defect is most likely associated with the N vacancy or Ga interstitial.


2010 ◽  
Vol 2010 ◽  
pp. 1-27 ◽  
Author(s):  
Michael Lorenz ◽  
Holger Hochmuth ◽  
Christoph Grüner ◽  
Helena Hilmer ◽  
Alexander Lajn ◽  
...  

Advanced Pulsed Laser Deposition (PLD) processes allow the growth of oxide thin film heterostructures on large area substrates up to 4-inch diameter, with flexible and controlled doping, low dislocation density, and abrupt interfaces. These PLD processes are discussed and their capabilities demonstrated using selected results of structural, electrical, and optical characterization of superconducting (YBa2Cu3O7−δ), semiconducting (ZnO-based), and ferroelectric (BaTiO3-based) and dielectric (wide-gap oxide) thin films and multilayers. Regarding the homogeneity on large area of structure and electrical properties, flexibility of doping, and state-of-the-art electronic and optical performance, the comparably simple PLD processes are now advantageous or at least fully competitive to Metal Organic Chemical Vapor Deposition or Molecular Beam Epitaxy. In particular, the high flexibility connected with high film quality makes PLD a more and more widespread growth technique in oxide research.


2019 ◽  
Vol 28 (01n02) ◽  
pp. 1940007 ◽  
Author(s):  
M. A. Mastro ◽  
J. K. Hite ◽  
C. R. Eddy ◽  
M. J. Tadjer ◽  
S. J. Pearton ◽  
...  

Recent breakthroughs in bulk crystal growth of β-Ga2O3 by the edge-defined film-fed technique has led to the commercialization of large-area β-Ga2O3 substrates. Standard epitaxy approaches are being utilized to develop various thin-film β-Ga2O3 based devices including lateral transistors. This article will discuss the challenges for metal organic chemical vapor deposition (MOCVD) of β-Ga2O3 and the design criteria for use of this material system in power electronic device structures.


Sign in / Sign up

Export Citation Format

Share Document