scholarly journals Machine-Learning Based Hybrid-Feature Analysis for Liver Cancer Classification Using Fused (MR and CT) Images

2020 ◽  
Vol 10 (9) ◽  
pp. 3134 ◽  
Author(s):  
Samreen Naeem ◽  
Aqib Ali ◽  
Salman Qadri ◽  
Wali Khan Mashwani ◽  
Nasser Tairan ◽  
...  

The purpose of this research is to demonstrate the ability of machine-learning (ML) methods for liver cancer classification using a fused dataset of two-dimensional (2D) computed tomography (CT) scans and magnetic resonance imaging (MRI). Datasets of benign (hepatocellular adenoma, hemangioma, cyst) and malignant (hepatocellular carcinoma, hepatoblastoma, metastasis) liver cancer were acquired at Bahawal Victoria Hospital (BVH), Bahawalpur, Pakistan. The final dataset was generated by fusion of 1200 (100 × 6 × 2) MR and CT-scan images, 200 (100 MRI and 100 CT-scan) images size 512 × 512 for each class of cancer. The acquired dataset was preprocessed by employing the Gabor filters to reduce the noise and taking an automated region of interest (ROIs) using an Otsu thresholding-based segmentation approach. The preprocessed dataset was used to acquire 254 hybrid-feature data for each ROI, which is the combination of the histogram, wavelet, co-occurrence, and run-length features, while 10 optimized hybrid features were selected by employing (probability of error plus average correlation) feature selection technique. For classification, we deployed this optimized hybrid-feature dataset to four ML classifiers: multilayer perceptron (MLP), support vector machine (SVM), random forest (RF), and J48, using a ten fold cross-validation method. MLP showed an overall accuracy of (95.78% on MRI and 97.44% on CT). Unfortunately, the obtained results were not promising, and there were some limitations due to the different modalities of the dataset. Thereafter, a fusion of MRI and CT-scan datasets generated the fused optimized hybrid-feature dataset. The MLP has shown a promising accuracy of 99% among all the deployed classifiers.

In agriculture the major problem is leaf disease identifying these disease in early stage increases the yield. To reduce the loss identifying the various disease is very important. In this work , an efficient technique for identifying unhealthy tomato leaves using a machine learning algorithm is proposed. Support Vector Machines (SVM) is the methodology of machine learning , and have been successfully applied to a number of applications to identify region of interest, classify the region. The proposed algorithm has three main staggers, namely preprocessing, feature extraction and classification. In preprocessing, the images are converted to RGB and the average filter is used to eliminate the noise in the input image. After the pre-processing stage, features such as texture, color and shape are extracted from each image. Then, the extracted features are presented to the classifier to classify an input tomato leaf as a healthy or unhealthy image. For classification, in this paper, a multi-kernel support vector machine (MKSVM) is used. The performance of the proposed method is analysed on the basis of different metrics, such as accuracy, sensitivity and specificity. The images used in the test are collected from the plant village. The proposed method implemented in MATLAB.


Author(s):  
Shubham Shitole

Prediction of the Respiratory diseases in the earlier stage can be very useful specially to improve the survival rate of that patient. CT scan images are used to detect various lung diseases .These CT scan reports are sent to pathologists for further process. Pathologists analyze CT scan report and predict the infected tissues which are the main cause of the particular disease. This is lengthy process and to avoid this steps and increase the accuracy of the prediction Machine learning plays an important role . The system proposes to build "Predictive Diagnostic System" of infectious lung by using the concept of image processing in conjunction with machine learning. Proposed system will detect the disease from CT scan images and use preprocessing technique that will remove the noise and disturbance in image. Feature extraction process is applied to extract the useful features of underlying image, and feature selection technique will further optimize the top ranking features. CNN algorithm is then applied to classify the images for detection of Respiratory disease. After detection of disease, report will be generated and submitted to patient.


2020 ◽  
Vol 11 (2) ◽  
pp. 71-85
Author(s):  
Nhat-Vinh Lu ◽  
Trong-Nhan Vuong ◽  
Duy-Tai Dinh

Sensory evaluation plays an important role in the food and consumer goods industry. In recent years, the application of machine learning techniques to support food sensory evaluation has become popular. Many different machine learning methods have been applied and produced positive results in this field. In this article, the authors propose a new method to support sensory evaluation on multiple criteria based on the use of a correlation-based feature selection technique, combined with machine learning methods such as linear regression, multilayer perceptron, support vector machine, and random forest. Experimental results are based on considering the correlation between physicochemical components and sensory factors on the Saigon beer dataset.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 203
Author(s):  
Maha M. Alshammari ◽  
Afnan Almuhanna ◽  
Jamal Alhiyafi

A tumor is an abnormal tissue classified as either benign or malignant. A breast tumor is one of the most common tumors in women. Radiologists use mammograms to identify a breast tumor and classify it, which is a time-consuming process and prone to error due to the complexity of the tumor. In this study, we applied machine learning-based techniques to assist the radiologist in reading mammogram images and classifying the tumor in a very reasonable time interval. We extracted several features from the region of interest in the mammogram, which the radiologist manually annotated. These features are incorporated into a classification engine to train and build the proposed structure classification models. We used a dataset that was not previously seen in the model to evaluate the accuracy of the proposed system following the standard model evaluation schemes. Accordingly, this study found that various factors could affect the performance, which we avoided after experimenting all the possible ways. This study finally recommends using the optimized Support Vector Machine or Naïve Bayes, which produced 100% accuracy after integrating the feature selection and hyper-parameter optimization schemes.


Author(s):  
Abdulrahman A. Alshdadi ◽  
Ahmed S. Alghamdi ◽  
Ali Daud ◽  
Saqib Hussain

Web spam is the unwanted request on websites, low-quality backlinks, emails, and reviews which is generated by an automated program. It is the big threat for website owners; because of it, they can lose their top keywords ranking from search engines, which will result in huge financial loss to the business. Over the years, researchers have tried to identify malicious domains based on specific features. However, lighthouse plugin, Ahrefs tool, and social media platforms features are ignored. In this paper, the authors are focused on detection of the spam domain name from a mixture of legit and spam domain name dataset. The dataset is taken from Google webmaster tools. Machine learning models are applied on individual, distributed, and hybrid features, which significantly improved the performance of existing malicious domain machine learning techniques. Better accuracy is achieved for support vector machine (SVM) classifier, as compared to Naïve Bayes, C4.5, AdaBoost, LogitBoost.


Author(s):  
Mohamad Ali Khalil ◽  
Khaled Hamad ◽  
Abdallah Shanableh

Accurate prediction of roadway traffic noise remains challenging. Many researchers continue to improve the performance of their models by either adding more variables or improving their modeling algorithms. In this research, machine learning (ML) modeling techniques were developed to predict roadway traffic noise accurately. The ML techniques applied were: regression decision trees, support vector machine, ensembles, and artificial neural network. The parameters of each of these models were fine-tuned to achieve the best performance results. In addition, a state-of-the-art hybrid feature-selection technique has been employed to select a minimum set of input features (variables) while maintaining the accuracy of the developed models. By optimizing the number of features used in the model, the resources needed to develop and utilize a model to predict roadway noise would be less, hence decreasing the development cost. The proposed approach has been applied to develop a free-field roadway traffic noise model for Sharjah City in the United Arab Emirates. The best developed ML model was compared with a conventional regression model which was developed earlier under the same conditions. The cross-validated results clearly indicate that the best ML model outperformed the regression modeling. The performance of the ML model was also assessed after reducing the number of its input features based on the outcome of the feature-selection algorithm; the model performance was slightly affected. This result emphasizes the importance of considering only features that greatly influence the roadway traffic noise.


2020 ◽  
Vol 8 (6) ◽  
pp. 2862-2867

E-commerce is a website or mobile application platform that help people to buy products. Before purchasing the product, customer will decide to buy it or not by reading the review from previous buyer. There is a problem that there are a lot of review so it will take a long time for customer to read it all. This research will be using sentiment analysis method to classify the review data. Sentiment analysis or opinion mining is a machine learning approach to classify and analyse texts or documents about human’s sentiments, emotions, and opinions. In this research, sentiment analysis was used to classify product reviews from e-commerce websites into positive or negative classes. The results could be processed further and be used to summarize customers' opinions about a certain product without reading every single review. The goal of this research is to optimize classification performance by using feature selection technique. Terms Frequency-Inverse Document Frequency (TF-IDF) feature extraction, Backward Elimination feature selection, and five different classifiers (Naïve Bayes, Support Vector Machine, K-Nearest Neighbour, Decision Tree, Random Forest) were used in analysing the sentiment of the reviews. In this research, the dataset used are Indonesian language and classified into two classes(positive and negative). The best accuracy is achieved by using TF-IDF, Backward Elimination and Support Vector Machine (SVM) with a score of 85.97%, which increases by 7.91% if compared to the process without feature selection. Based on the results, Backward Elimination feature selection succeeded in improving all performance for all classifiers used in this research.


Sentiment analysis is an area of natural language processing (NLP) and machine learning where the text is to be categorized into predefined classes i.e. positive and negative. As the field of internet and social media, both are increasing day by day, the product of these two nowadays is having many more feedbacks from the customer than before. Text generated through social media, blogs, post, review on any product, etc. has become the bested suited cases for consumer sentiment, providing a best-suited idea for that particular product. Features are an important source for the classification task as more the features are optimized, the more accurate are results. Therefore, this research paper proposes a hybrid feature selection which is a combination of Particle swarm optimization (PSO) and cuckoo search. Due to the subjective nature of social media reviews, hybrid feature selection technique outperforms the traditional technique. The performance factors like f-measure, recall, precision, and accuracy tested on twitter dataset using Support Vector Machine (SVM) classifier and compared with convolution neural network. Experimental results of this paper on the basis of different parameters show that the proposed work outperforms the existing work


2020 ◽  
Vol 32 (2) ◽  
pp. 67-92 ◽  
Author(s):  
Muhammad Sharif ◽  
Muhammad Attique ◽  
Muhammad Zeeshan Tahir ◽  
Mussarat Yasmim ◽  
Tanzila Saba ◽  
...  

Gait is a vital biometric process for human identification in the domain of machine learning. In this article, a new method is implemented for human gait recognition based on accurate segmentation and multi-level features extraction. Four major steps are performed including: a) enhancement of motion region in frame by the implementation of linear transformation with HSI color space; b) Region of Interest (ROI) detection based on parallel implementation of optical flow and background subtraction; c) shape and geometric features extraction and parallel fusion; d) Multi-class support vector machine (MSVM) utilization for recognition. The presented approach reduces error rate and increases the CCR. Extensive experiments are done on three data sets namely CASIA-A, CASIA-B and CASIA-C which present different variations in clothing and carrying conditions. The proposed method achieved maximum recognition results of 98.6% on CASIA-A, 93.5% on CASIA-B and 97.3% on CASIA-C, respectively.


2021 ◽  
Vol 12 (11) ◽  
pp. 1886-1891
Author(s):  
Sarthika Dutt, Et. al.

Dysgraphia is a disorder that affects writing skills. Dysgraphia Identification at an early age of a child's development is a difficult task.  It can be identified using problematic skills associated with Dysgraphia difficulty. In this study motor ability, space knowledge, copying skill, Visual Spatial Response are some of the features included for Dysgraphia identification. The features that affect Dysgraphia disability are analyzed using a feature selection technique EN (Elastic Net). The significant features are classified using machine learning techniques. The classification models compared are KNN (K-Nearest Neighbors), Naïve Bayes, Decision tree, Random Forest, SVM (Support Vector Machine) on the Dysgraphia dataset. Results indicate the highest performance of the Random forest classification model for Dysgraphia identification.


Sign in / Sign up

Export Citation Format

Share Document